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by Alexandros Nikou

Abstract

Over the last years a significant scientific research attention has been observed in the
aerial robotic field towards aerial manipulation and cooperation in dynamic environ-
ments. In this context, a new novel aerial manipulation system will be constructed in
the Control Systems Lab at National Technical University of Athens. The proposed
integrated system is composed of seven thrusters and an end-effector that can produce
the desired actuation forces and torques to the environment. The mechanical design
of the aforementioned system has been studied in [1].

Following this work, in this thesis a detailed differential kinematic model that relates
the end-effector velocities with the corresponding velocities of the body frame is pre-
sented. The geometry specifications and the dynamic analysis are studied in order
to describe mathematically the motion of the proposed system in the Cartesian task
space. A static analysis is introduced for providing the mathematical relationship of
the interaction with the environment. Taking all the above parameters into considera-
tion, a nonlinear robust adaptive backstepping controller is designed in order to ensure
robustness against actuator failures, unmodeled dynamics and external disturbances.

Extended numerical simulations were performed in Matlab Environment in order to
verify the theoritical results of the this work, to demonstrate the performance of the
system and the effectiveness of the controller. Finally, animated videos were created
with the aim to observe graphically the motion the proposed system in arbitrary track-
ing and stabilization manipulation tasks scenarios.

Keywords: Robotics, Aerial Manipulation, Optimization, Kinematics, Dynamics,
Statics, Nonlinear Control, Robust Adaptive Backstepping, MATLAB Simulations
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Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Μηχανολόγων Μηχανικών

Μεταπτυχιακό Δίπλωμα Ειδίκευσης στον Αυτόματο ΄Ελεγχο και στη ΡομποτικήΑνάλυση, Μοντελοποίηση, Σχεδίαση και Μη Γραμμικός ΄ΕλεγχοςΕνός Ιπτάμενου Ρομποτικού Οχήματος
Αλέξανδρος Νίκου

Περίληψη1

Τα τελευταία χρόνια μια σημαντική επιστημονική ερευνητική προσοχή έχει παρατηρηθεί

στον τομέα της εναέριας ρομποτικής ως προς την κατεύθυνση του εναέριου ρομποτικού

χειρισμού και τη συνεργασία σε δυναμικά περιβάλλοντα. Σε αυτό το πλαίσιο, ενας νέος

και καινοτόμος ρομποτικός χειριστής πρόκειται να κατασκευαστεί στο Εργαστήριο Αυ-

τομάτου Ελέγχου στο Εθνικό Μετσόβιο Πολυτεχνείο. Το προτεινόμενο ολοκληρωμένο

σύστημα αποτελείται από εφτά κινητήρες και ενα τελικό στοιχείο δράσης το οποίο έχει

την δυνατότητα να επικοινωνεί με το περιβαλλον και να ασκεί επιθυμητές δυνάμεις και

ροπές. Ο μηχανολογικός σχεδιασμός του συστήματος μελετήθηκε στην εργασία [2].

Συνεχίζοντας αυτήν την έρευνα, στην παρούσα εργασία μελετήθηκε λεπτεμερώς το δι-

αφορικό κινηματικό μοντέλο του συστήματος, μέσω του οποίου συσχετίζονται οι ταχύτητες

του τελικού σημείου δράσης με τις αντίστοιχες του βασικού σωματόδετου πλαισίου.

Μελετήθηκαν τα γεωμετρικά χαρακτηριστικά του συστήματος καθώς και η δυναμική

ανάλυση ώστε να περιγραφεί με ένα μαθηματικό μοντέλο η κίνηση του προτεινόμενου

συστήματος στον Καρτεσιανό χώρο δράσης. Στη συνέχεια ένα στατικό δυναμικό μοντέλο

εισάγεται ώστε να περιγραφεί η μαθηματική σχέση που συνδέει της αλληλεπίδραση του

συστήματος με το περιβάλλον.

1Λόγω του οτι το πρόβλημα που πραγματεύεται η παρούσα εργασία εμπεριέχει μεγάλο πλήθος από
εξειδικευμένους όρους, η μετάφραση των οποίων στα Ελληνικά δεν είναι δόκιμη, κρίθηκε προτιμότερο να
γραφτεί εξ ολοκλήρου στα Αγγλικά

2G. Gavridis,“Control Oriented Aerodynamic Design Optimization For An Aerial Manipulator”,
Diploma Thesis, National Technical University of Athens, 2014



Λαμβάνοντας όλα τα προηγούμενα υπόψιν, ένας μη γραμμικός εύρωστος προσαρμοστικός

ελεγχτής μέσω αλγορίθμου οπισθοδρόμησης σχεδιάστηκε έτσι ώστε να εγγυηθεί η ευρ-

ωστία και η ευστάθεια του συστήματος ενάντια στην παρουσία σφαλμάτων ενεργοποίησης

από τους κινητήρες, τις δυνάμεις και ροπές που είναι ανέφικτο να μοντελοποιηθούν καθώς

και τις εξωτερικές διαταραχές που επιδρούν στο σύστημα.

Τέλος, πραγματοποιήθηκαν εκτενείς αριθμητικές προσομοιώσεις στο περιβάλλον προ-

γραματισμού τουMatlab έτσι ώστε να επιβεβαιωθούν τα θεωρητικά αποτελέσματα της ερ-
γασίας και να αποδειχθεί η αποδοτικότητα του προτεινόμενου συστήματος καθώς και του

ελεγχτή. Τέλος, δημιουργήθηκαν animation video με στόχο την καλύτερη παρατήρηση
της γραφικής κίνησης και του ελέγχου του καινοτόμου συστήματος σε προβλήματα στα-

θεροποίησης και παρακολούθησης επιθυμητών τροχιών.Λέξεις Κλειδιά: Ρομποτική, Εναέριος Ρομποτικός Χειρισμός, Κινηματική Ανάλυση,
Δυναμική Ανάλυση, Στατική Ανάλυση, Μη Γραμμικός ΄Ελεγχος, ΄Ευρωστος Προσαρ-

μοστικός Ελεγχτής μέσω Οπισθοδρόμισης, Προσομοιώσεις με MATLAB
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Chapter 1

Preface

1.1 Introduction

Aerial manipulation is a new scientific field which has been gaining significant research
attention and a wide variety of structures have been proposed in the last years. These
manipulation systems possess several features which have lately brought them in the
spotlight, with their objective mainly oriented towards performing effectively complex
manipulating tasks in unstructured and dynamic environments. Having them include
active manipulation as a major functionality, would vastly broaden the applications of
these systems, as they move from mere passive observation and sensing to interaction
with the environment. Therefore, new scientific applicable horizons will be introduced
related to cooperative manipulation, surveillance, industrial inspections, inspection
and maintenance of aerial power lines, assisting people in rescue operations, construct-
ing at inaccessible sites by repairing and assembling, with potential applications in
object retrieval and improved observation through manipulating barriers, objects or
switches. These aerial robots are capable of physically interacting with objects in the
environment through a terminal end-effector. Naturally, both designing and control-
ling aerial manipulators could be considered as nontrivial engineering challenges.

1.2 Literature Review

A wide variety of aerial manipulation systems and aerial robots that can interact with
the environment have been studied and proposed in bibliography. In this subsection,

1



Chapter 1 Preface 2

an explanatory and extended literature review for the previous works that has been
adopted in this field, is presented.

The first theoretical and experimental results on aerial robots interacting with the
environment were derived by a three DOF ducted-fan prototype with a four DOF
end-effector (Figure 1.1). This UAV aerial manipulator was within the framework of
AIRobots project on 2008-2013. The works in [2, 3, 4, 5, 6] refer to the mechanical
design, the mathematical modelling and the control of this system focusing on the
interaction with the environment by addressing two different control scenarios, the
take-off and the set-stand vertical fixed surfaces. Impedance control problems are also
considered. Authors performed ulstrasonic non-destructive testing experiments and
versatile tasks at unreachable locations for humans.

Figure 1.1: Ducted Aerial Manipulator from AIRobots Project

The design of a quadrotor (Figure 1.2) capable of applying force to a wall maintaining
flight stability is provided in [7]. The basis for the work presented is a quadrotor system
which is stabilized with an inertial measurement unit. As new approach an additional
actuator was added to generate forces in physical contact while the quadrotor stays
horizontal. The performance of the system is proved by several flight tests.

Figure 1.2: A quadrotor applying force to a wall [7]
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In [8, 9, 10, 11] considerable experimental results at Yale University with a small
helicopter with grasping capabilities (Figure 1.3) are shown along with the stability
proofs while grasping. Authors demonstrated stable grasping of a range of objects
both when landing and while hovering. The dynamic load disturbances introduced by
the load mass was rejected by a PID flight controller. The approach employs passive
mechanical compliance and adaptive underactuation in the gripper to allow for large
positional displacements between the aircraft and the target object.

Figure 1.3: The Yale Aerial Manipulator

The authors in [12] present the design of several light-weight, low-complexity grip-
pers that allow quadrotors to grasp and perch on branches or beams and pick up and
transport payloads (Figure 1.4). It is showed how the robot can use rigid body dy-
namic models and sensing to verify a grasp, to estimate the inertial parameters of the
grasped object, and to adapt the controller and improve performance during flight.
Experimental results with different grippers are also showed.

Figure 1.4: A Quadrotor equipped with a gripper from UPEN Grasp Lab [12]

An implementation of autonomous indoor aerial gripping using a low-cost, custom-
built quadrotor is provided in [13], [14]. This research extends the typical functionality
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of micro air vehicles form passive observation to sensing and to dynamic interaction
with the environment. The system utilizes nested PID controllers for attitude stabi-
lization, vision-based navigation and gripping. This quadrotor (Figure 1.5) is able to
autonomously navigate, locate and grasp an object using only on-board sensors.

Figure 1.5: A quadrotor performing aerial gripping [13]

The authors in [15, 16, 17] considered the problem of controlling multiple quadrotor
robots that cooperatively grasp and transport a payload in three dimensions. Quadro-
tors are modeled (Figure 1.6) both individually and as a group rigidly attached to a
payload. Individual robot control laws which are proposed, are defined with respect
to the payload that stabilize the payload along three-dimensional trajectories. An
experimental study with teams of quadrotors cooperatively grasping, stabilizing and
transporting payloads along desired three-dimensional trajectories is presented below.

Figure 1.6: Four quadrotors carrying a payload

Another significant work with cooperative quadrotors throwing and catching a ball
with a net (Figure 1.7) is presented in [18]. Based on a first-principles model of
the net forces, nominal inputs for all involved vehicles are derived from arbitrary
target trajectories of the net. Two algorithms that generate open-loop trajectories for
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throwing and catching a ball are also introduced. The feasibility methods has been
validated in experimental in the ETH Arena.

Figure 1.7: Three quadrotors attached to a net [18]

A system for aerial manipulation composed of a helicopter platform and a fully actu-
ated seven DOF redundant industrial robotic arm (Figure 1.8) is introduced in [19, 20].
It is shown that the dynamic coupling between helicopter and arm can generate di-
verging oscillations with very slow frequency. An impedance controller approach is
proposed for the whole system. Flights experiments that have been done showed that
the system might be used in practically relevant tasks.

Figure 1.8: A helicopter equipped with a 7 DOF robotic arm in [19]

A novel dextrous hexrotor platform equipped with a 6 DOF end-effector (Figure 1.9)
for interaction with structures has been proposed in [21, 22, 23, 24]. This manipulator
can exert arbitrary wrenches in the 6 DOF force/torque space and provides the unique
capability of being able to resist any applied wrench, or generalized force/torque.
A thrust mapping based on decomposed net force/torque and a control system which
allows the pilot to control the position and the orientation separately has been derived.
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Figure 1.9: A novel dextrous hexrotor manipulator in [21]

A multi-body aerial manipulator composed of a hexarotor main body equipped with
a two-link manipulator with a low-cost gripper (Figure 1.10) has been studied in [25].
The proposed approach employed free-flying multi-body dynamics modelling and back-
stepping control to develop stabilizing control laws for a class of underactuated sys-
tems. Two control methods are developed: coordinate-based and coordinate-free which
are both generally applicable to aerial manipulation tasks.

Figure 1.10: A helicopter equipped with a two-link manipulator in [25]

A significant experiment using a quadrotor with a two DoF robotic arm (Figure 1.11)
can be found in [26]. By considering the quadrotor and the robot arm as a combined
system, the kinematic and dynamic models were developed and an adaptive sliding
mode controller was designed. With the controller, an autonomous flight experiment
was conducted including picking up and delivering an object, which requires accurate
control of the quadrotor and the robotic arm.
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Figure 1.11: A quadrotor with 2 DoF manipulator in [26]

In [27] the challenges in controlling a mobile manipulating UAV using a commercially
available aircraft with three light-weight each with 2-DoF robotic arms (Figure 1.12)
is investigated. Because of the overall instability of the rotorcraft, a motion capture
system was used to build an efficient autopilot. The results indicated that the proto-
type could be accurately modeled and controlled given significant disturbances when
both moving the manipulators and interacting with the ground.

Figure 1.12: A quadrotor with three 2-DoF robotic arms in [27]

Finally, theoretical results for modelling and controlling quadrotors equipped with
multi DoF robotic arms in order to interact with the environment can be found in
[28, 29, 30, 31, 32].
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1.3 Problem Statement

In the framework of the development of a completely autonomous aerial manipula-
tion system, the main issues to be resolved are the mechanical design, the kinematic,
dynamic and static analysis, the control of the final system aiming to perform ad-
vanced manipulation tasks effectively and the final choice of the system’s mechanical
and hardware components.

The idea of the proposed novelty system was developed at Control Systems Lab on
National Technical University of Athens. The proposed system is fully integrated,
because is not considered as a commercial aerial robot equipped with an external
robotic arm, as many of proposed aerial manipulators in the bibliography introduced
above. The system is equipped with seven thrusters in optimal locations that can
produce maximum thrust force λmax = 28N , without aerodynamic interaction. The
mechanical design has been performed in a control-oriented way so that the final system
could be controllable and exact feedback linearizable.

The first engineering results of the project can be found in [1] where the mechanical
design of the system, which is the result of solving difficult optimization problems,
is presented along with an extended review of the suitable system components and
hardware. The aim of this thesis was to integrate the primary work with the final
pre-manufacturing stage. In this context, the first objective was to provide a well-
defined 3D geometry mechanism for the exact study of the motion of the system in
the 3D space. This was investigated by the extensive geometry analysis, the thrust
force redistribution among the seven actuators, the kinematic differential equations
of the end-effector and the dynamic/static force analysis needed for the final motion.
The following step was to design a high-level nonlinear controller that would provide
accurate trajectory tracking of the end-effector in arbitrary trajectories, by identifying
and taking into account the system geometry specifics. The controller should be able
to handle possible uncertainties, unmodeled dynamics, actuator failures, external and
environmental disturbances. Finally, simulations have been carried out in order to test
the performance of the system and to estimate if the proposed system was able to be
manufactured, which constituted the last objective.
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1.4 Thesis Structure

The rest of this thesis is organized as follows:

• In Chapter 2 a functional description of the proposed aerial robot, the main ideas
and principles, the primary work, the mechanical design process via optimiza-
tion problems and the components that are going to compose the system in the
manufacturing stage are discussed.

• In Chapter 3 an analysis is made on the Kinematics of the Aerial Manipulator. At
first, several reference frames and relative motions are defined and in the sequel
the kinematic tranformations and the basic assumptions are provided. Finally,
the differential kinematics equation is derived along with the time derivative of
Jacobian.

• In Chapter 4 a mathematical model that captures the proposed system dynamics
and govern the behavior of the system is derived with well-known Newton -
Euler formalism. All matrices that compose the dynamic analysis are presented
explanatory and in the end of the Chapter a static model for the system in
interaction with the environment is provided.

• In Chapter 5 the nonlinear model of the system is analyzed with nonlinear con-
trol theory tools. Controllability conditions, system’s relative degree computa-
tion and feedback linearizability conditions are provided. Based on this highly
nonlinear model a robust adaptive backstepping control law is designed tak-
ing into account the modelling errors, the unmodeled dynamics, the actuator
failures, the external and environmental disturbances. The stability proofs are
extensively provided.

• In Chapter 6 the performance of the developed kinematic, the dynamic and
the controller design analysis is demonstrated through a series of simulation
in MATLAB where various aerial manipulation tasks scenarios are considered.
MATLAB Figures and animation videos are used for illustrative purposes in
order to show the motion of the system and the controller effectiveness.

• Finally, in Chapter 7 an overall description of this work is presented. Moreover,
the conclusions of the thesis are summarized and possible suggestions and future
directions are provided.



Chapter 2

Mechanical Design

2.1 Introduction

The overall description of the Aerial Manipulator was based on the idea of designing
an aerial robot composed of a set number n of similar thrusters and an end-effector in
order to interact with objects in the environment. the exact geometry of the structure
will be the result of the analysis in this section. The aforementioned mechanical design
process is extensively presented in the primary work thesis [1].

2.2 Principles of the Problem

Initially, we will define the Body-Fixed frame FB = {x̂B, ŷB, ẑB} and End-Effector
frame FE = {x̂E, ŷE, ẑE}. These frames are attached to the rigid body of the aerial ma-
nipulator as in Figure 2.1. The vectors ri, re ∈ R3 denote the position of each thruster
and the position of end-effector respectively with reference to the Body frame. The
thruster orientations are given by a unit vector F̂i ∈ R3, i = 1, ..., n, the corresponding
thrust forces are defined as λi and the propulsion vectors are given by λi F̂i. In the rest
of the analysis, all forces ant torques acting to the system can be expressed in Body-
Fixed frame. At this point, it is assumed that the total system is considered to be a
rigid body and without loss of generality the End-Effector frame and the Body frame
have the same orientation. Thus, for the actuation force applying to the end-effector
is

Fact
∣∣
B
= Fact

∣∣
E
∈ R3 (2.1)

10
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where
∣∣
B
,
∣∣
E
, denote the expression to frames FB, FE respectively. The corresponding

actuation torque is obtained via the formula

Tact
∣∣
B
= Tact

∣∣
E
+ re × fe (2.2)

where
Tact
∣∣
E
= r × fe (2.3)

is the torque produced by the end-effector. The terms r, fe are the displacement vector
(length of the lever arm) and the vector force that tends to rotate a gripped object
from the end-effector.

Figure 2.1: Aerial Manipulator Configuration Frame System

2.3 Forces and Torques

The forces transmitted essentially through the end-effector are written as

n∑
i=1

(λi F̂i) +W = Fact
∣∣
B

(2.4)

where W ∈ R3 is the vector that correspond to the total weight of the system. The
weight can be separated as ws = W −n w where w ∈ R3 is the weight of each thruster.
The separation of weights is made so as to define the necessary number (n) of thrusters
in the rest of analysis. Using the previous result and modifying the (2.4) in matrix
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form we conclude that
F λ+ n w + ws = Fact

∣∣
B

(2.5)

where

λ =
[
λ1 · · ·λn

]τ
∈ Rn (2.6)

F =
[
F̂1 · · · F̂n

]τ
∈ R3×n (2.7)

Using the matrix
F̄ = Fact

∣∣
B
− n w − ws (2.8)

the equation (2.5) can be written as

F λ = F̄ (2.9)

Similarly, the torque produced from each thruster is

Ti = ri × (λi F̂i) = λi S(ri) F̂i (2.10)

using the well-known skew-symmetric matrix S(·) ∈ R3×3 such that a × b = S(a) b

for the cross-product × and any vectors a, b ∈ R3 (explanatory properties of skew-
symmetric matrices will be discussed in Chapter 3). The torque due to the weight can
be calculated as

TW = rG ×W =
n∑
i=1

ri × w + rs × ws =
n∑
i=1

S(ri)w + S(rs)ws

where rG is the center of gravity of the system and rs is the center of gravity of the total
system when omitting the mass of each thruster. The reaction torque of each thruster
is τi = µ (λ F̂i) where µ is a coefficient that represents the relationship between the
thrust force and the reaction torque [33]. Therefore, combining all torques the following
equation holds

n∑
i=1

{
λi S(ri) F̂i

}
+ µ

n∑
i=1

(
λi F̂i

)
+

n∑
i=1

S(ri) w + S(rs) ws = Tact
∣∣
B

⇔
n∑
i=1

{
λi S(ri) F̂i

}
+ µ F λ+

n∑
i=1

S(ri) w + S(rs) ws = Tact
∣∣
B

⇔
n∑
i=1

{
λi S(ri) F̂i

}
+ µ F̄ +

n∑
i=1

S(ri) w + S(rs) ws = Tact
∣∣
B

(2.11)
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Using the matrices

r =
[
r1 · · · rn

]τ
∈ R3×n (2.12)

E(r, F ) =
[
S(r1) F̂1 · · · S(rn) F̂n

]
∈ R3×n (2.13)

in (2.11) we get 
F λ = F̄

E λ = Tact
∣∣
B
− µ F̄ −

n∑
i=1

S(ri) w − S(rs) ws
(2.14)

Defining the transformation matrix from actuator space to end-effector space

D(r, F ) =

[
F

E(r, F )

]
∈ R6×n (2.15)

from the system (2.14) it is implied that

D(r, F ) λ = WR (2.16)

where the augmented wrench vector WR ∈ R6 is given by

WR =

 F̄

Tact
∣∣
B
− µF̄ −

n∑
i=1

S(ri)w − S(rs)ws

 (2.17)

2.4 Negative Thrust Forces

It is clear that when solving the (2.16), the matrix that corresponds to the propulsion
effort λ can obtain any value in R6. However, the thrusters are optimally designed to
produce thrust force towards a specific direction, which we set to correspond to the
positive values of λi. In order to alleviate the problem of negative thrust forces λi, a
conservative solution is adopted in this analysis, which will be based on the idea of
introducing one additional thruster. Thus, (2.16) is rewritten as

n∑
i=1

λi ti = WR (2.18)
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where

D(r, F̂ ) =
[
t1 · · · tn

]
(2.19)

ti =

[
F̂i

S(ri) F̂i

]
∈ R6 (2.20)

for all i = 1, . . . , n. The vector

ta = −
n∑
i=1

ti = −
n∑
i=1

[
F̂i

S(ri) F̂i

]
=

 −
n∑
i=1

F̂i

−
n∑
i=1

{
S(ri)F̂i

}
 =

[
F̂a

S(ra)F̂a

]
(2.21)

that corresponds to the additional thruster is introduced. Using (2.21) the position
vector ra and the direction F̂a of the new thruster should satisfy the equations

F̂a = −
n∑
i=1

F̂i (2.22)

S(F̂a) ra = −
n∑
i=1

{
S(F̂i) ri

}
(2.23)

If we assume at this point, that (2.16) results in some negative thrust forces then the
set

σN = {k : λk < 0, k = 1, ..., 6} (2.24)

denote the indexes for every negative thrust force and

σP = {1, 2, 3, 4, 5, 6} − σN (2.25)

the corresponding set of positive thrust forces. Noticing that

λk < 0 ⇔ (−λk) > 0, ∀ k ∈ σN (2.26)

the equation (2.18) can be separated in

∑
i∈σP

λi ti +
∑
k∈σN

λk tk = WR

⇔
∑
i∈σP

λi ti +
∑
k∈σN

(−λk) (−tk) = WR (2.27)
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Now, from (2.21) the following can be exported

ta = −
n∑
i=1

ti = −
∑
i∈σP

ti −
∑
j∈σN

tj

⇔ −
∑
j∈σN

tj = ta +
∑
i∈σP

ti (2.28)

It is obvious that
−
∑
j∈σN

tj = −tk −
∑
j∈σN
j 6=k

tj, ∀ k ∈ σN (2.29)

Combining (2.28), (2.29) we obtain

− tk = ta +
∑
i∈σP

ti +
∑
j∈σN
j 6=k

tj, ∀ k ∈ σN (2.30)

Substituting (2.30) in (2.27) we have

∑
i∈σP

λi ti +
∑
k∈σN

(−λk)
[
ta +

∑
i∈σP

ti +
∑
j∈σN
j 6=k

tj

]
=WR

∑
i∈σP

λi ti +
∑
k∈σN

(−λk) ta +
∑
k∈σN

(−λk)
∑
i∈σP

ti +
∑
k∈σN

[
(−λk)

∑
j∈σN
j 6=k

tj

]
= WR (2.31)

It is known from basic mathematical summing properties that

∑
k∈σN

(−λk)
∑
i∈σP

ti =
∑
i∈σP

[ ∑
k∈σN

(−λk)
]
ti (2.32)

∑
k∈σN

[
(−λk)

∑
j∈σN
j 6=k

tj

]
=
∑
k∈σN

[ ∑
j∈σN
j 6=k

(−λj)
]
tk (2.33)

Thus, the (2.31) by combining (2.32) and (2.33) can be written as

∑
i∈σP

[
λi +

∑
k∈σN

(−λk)
]
ti +

∑
k∈σN

[ ∑
j∈σN
j 6=k

(−λj)
]
tk +

[ ∑
k∈σN

(−λk)
]
ta = WR (2.34)
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Defining

∆ =
∑
k∈σN

(−λk) > 0 (2.35)

Ek =
∑
j∈σN
j 6=k

(−λj) > 0 (2.36)

and substituting it in (2.34) it finally yields

∑
i∈σP

(
λi +∆

)
ti +

∑
k∈σN

Ek tk +∆ ta = WR (2.37)

From (2.37) the thruster redistribution among all thrusters after adding the new
thruster is provided. It has been proven that the issue of negative thrust forces can be
alleviated by adding one extra thruster. This equation can be better analysed in Fig-
ure 2.2 in which the thrust redistribution algorithm is depicted. The variables λ′, λ′i, λ′k
denote the initial thrust forces and the other the thrust force after redistribution, plus
the additional thrust force λa. The λ′i, ∀ i ∈ σP denote the initially non-negative
thrust forces and the λ′k, ∀ k ∈ σN denote the initially negative thrust forces. This
means that at every time, six thrust forces (not necessary all positive) are equivalent
with seven thrust forces, all positive with redistributed thrust forces as in (2.37).

Figure 2.2: Thrust Force Equivalence

In order better understand the thrust force redistribution algorithm, an example will
be given. Let’s assume at in an arbitrary time ts ≥ 0, the system needs actuation
thrust forces 

λ′1(ts)

λ′2(ts)

λ′3(ts)

λ′4(ts)

λ′5(ts)

λ′6(ts)


=



−8

7

−5

3

−4

5


[Newton]
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Then the sets σP , σN can be easily derived from (2.24), (2.25) as σP = {2, 4, 6}, σN =

{1, 3, 5}. The ∆ is given by ∆ = −(−8) − (−5) − (−4) = 17. Hence, after the
redistribution algorithm the new thrusts are

λ′1(ts)

λ′2(ts)

λ′3(ts)

λ′4(ts)

λ′5(ts)

λ′6(ts)

λa(ts)


=



9

24

12

20

13

22

17


[Newton]

Closing the issue of the negative thrust forces, the additional thruster reforms the
(2.12), (2.17) into

F̄ = Fact
∣∣
B
− (n+ 1) w − ws (2.38)

WR =

 F̄

Tact
∣∣
B
− µ F̄ −

n+1∑
i=1

S(ri) w − S(rs) ws

 (2.39)

where here after n is added the additional thruster for changing the total weight of
the system.

2.5 Aerodynamic Interaction

At this point, the aerodynamic interaction between the operating thrusters is investi-
gated. The aerodynamic effects produced by each thruster are based on experiments
that took place in Control Systems Lab NTUA on a 8 × 4.7SF APC propeller ac-
companied with the Neu Motor NEU 1902/2Y - 2035 motor, which produces at 17550
rpm, λmax = 28N thrust force. The surface, corresponding to every thruster, that
approximates these effects is a third order equation in (SI). By expressing this surface
to body attached thruster coordination frame FTi = {x̂′i, ŷ′i, ẑ′i}, i = 1, ..., 6, a we get−0.06 ≤ x′i ≤ 0.91

(y′i)
2 + (z′i)

2 ≤ [−1.11(x′i)
3 + 1.56(x′i)

2 − 0.31(x′i) + 0.11]
2

(2.40)
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Hence, the aerodynamic effects of the air flow throughout the rotor are extended from
x = −0.06m to x = 0.91m and x axis shows the length of the aerodynamic effect of
the exit flow. In order to understand this one should consider the rotor/blade to be
positioned at x = 0. On the other side, y axis shows the distance of the effect measured
from the rotation axis of the blade, where at position x = 0, y = 0.102m (SI) is the
blade radius in approximation (because the existence of an offset).

The description of an arbitrary point p = [x y z]τ expressed in FB and the correspond-
ing p′i = [x′i y

′
i z

′
i]
τ expressed in FTi , can be linked by an equation

p = {TRFTi
FB

(ri, F̂i)} p′i (2.41)

where TRFTi
FB

(ri, F̂i) is the appropriate homogeneous frame transformation correspond-
ing to the translation and orientation vectors (ri, F̂i). By combining the coordinates
transformation equation with the constraints (2.40), a set of constraints that can be
described in matrix form as G(ri, F̂i, p) ≤ 0, is produced. The distance between two
such volumes i, j can defined and evaluated via the optimization problem (P1) of Table
2.1.

(P1)

dij(ri, F̂i, rj, F̂j) = min
pi,pj

‖pi − pj‖

s.t. G(ri, F̂i, pi) ≤ 0

G(ri, F̂i, pj) ≤ 0

(P2)

min
r,F̂

J(r)

s.t. σ(D) ≥ ε1
dij ≥ ε2, ∀ i, j = 1, 2, . . . , n, α
dei ≥ Re, ∀ i = 1, 2, . . . , n, α

F̂a = −
n∑
i=1

F̂i

S(F̂a) ra = −
n∑
i=1

S(F̂i) ri

1 ≤ κ(D) ≤ K

Table 2.1: Optimization Problems

2.6 Design Problem

Given a particular structure defined by the matrices (r, F ), for a set of required
actuation forces and torques (Fact

∣∣
E
, Tact

∣∣
E
) it is necessary to find the associates levels
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of the thrust forces λi. Since WR ∈ R6, in order for (2.16) to have a solution for
λ ∈ Rn, the conditions {rank(D(r, F )) = 6, n ≥ 6} are required. The rank condition
is adequate from a strict mathematical perspective but from a practical point of view,
since the (2.16) leads to the thrust forces values λ ∈ Rn the sought solutions should not
be very sensitive to small deviations. This is partially achieved by using the condition
number

κ(D) =
σmax(D)

σmin(D)
(2.42)

where σ(D) =
√

eig(DτD) are the singular values of matrix D, eig(·) denotes the
eigenvalues of a matrix and σmax(D), σmin(D) are the maximum and minimum singular
values of matrix D respectively. Thus, a low condition number κ(D) ≥ 1 is required
[34]. Although the condition number is bounded to to take feasible values (not equal
to zero/infinity) when σ(D) → 0 , the matrix D(r, F ) might be ill-conditioned and
the determinate close to zero (det(D(r, F )) ≈ 0). Thus, σ(D) ≥ ε1 > 0. Furthermore,
as it is referred, to avoid fan interaction an other constraint is dij(ri, F̂i, rj, F̂j) ≥ ε2 >

0 ∀i, j = 1, 2, . . . , n, α. Note that in resemblance to (P1), it should be introduced
to the design problem the position re as the avoidance between a sphere, (with Re

radius) that encloses the end-effector, and thrusters. This sphere when expressed to
body attached end-effector coordination frame FE is given by

(x′e)
2 + (y′e)

2 + (z′e)
2 ≤ R2

e (2.43)

in correspondence to (2.40). Therefore, dei(re, ri) ≥ Re > 0 ∀i = 1, 2, . . . , n, α. An
optimization is also needed to minimize the volume of the system, which is translated
with the norm function of the form: J(r) = ‖r‖2. Taking all these into account, the
design problem is essentially recast to the optimization problem (P2) from Table 2.1
where the optimization parameters are chosen asK = 5, ε1 = 10−3, ε2 = 10−2 m, Re =

10−2 m.

2.7 Solving the Optimization Problem

Notice that when solving the optimization problem (P2) each time should be solved
the inside optimization (P1). But the number of thrusters is seven and in that way the
total number of distances to be calculated is twenty one plus seven between the end-
effector. The decision variables of the optimization problem will be 45 corresponding
to seven position vectors and to seven directional vectors of each thruster and one
position vector of the end-effector. That entails the necessity of solving twenty one
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optimization problems for each evaluation of the outside problem (P2). Although the
problem (P2) has smooth objective function the inequality constraints are nonsmooth,
nonlinear and discontinuous.

More specifically, the inside optimization problem that refers to the avoidance of the
fan interaction is smooth but in terms of the outside (P2) is nonsmooth and nonlinear.
This inside problem has one and only one minimum according to the inputs and that
minimum is global. Moreover, both the objective function and the constraints of the
problem are continuous. Therefore, it was solved with active-set strategy [35],[36] by
using appropriate rotation and transformation matrices.

Since the design problem (P2) has nonsmooth, discontinuous and nonlinear inequality
constraints, it is used a non-gradient-based methodology that searches disjoint feasi-
ble regions. Therefore, for the pre search of the design space was chosen the Latin
Hypercube (LHS) [37]. This ensures that the points are distributes throughout the
search space, and Latin hypercube sampling is known to provide better coverage than
simple random sampling, [38]. Following this was used a direct search algorithm called
Generalized Pattern Search (GPS) [39],[40].

The thrust force (λ) and momentum (Q) can be computed from [41],[42] asQ = πρ CQ R5 Ω2

λ = πρ Cλ R
4 Ω2

⇔ Q =
CQ
Cλ

R λ (2.44)

where the term CQ
Cλ

R corresponds to the µ coefficient, R is the radius of the rotor and
ρ,Ω are the air density and the rotational speed of the rotor respectively. By applying
a combination of Blade Element Theory [42] and Momentum Theory [33] and using
modified versions proposed in [41], it was calculated in experiments held on CSL for
the APC propeller that

Cλ = 0.008, CQ = 0.0095, µ = 0.1473, R = 0124m (2.45)

Consequently, by solving the optimization, with the results depicted in Table 2.2, the
D(r, F ) resulted as a full ranked matrix. For this solution of (P2), all the constraints
were satisfied and produced results that correspond to a low volume body structure
with condition number κ(D) = 3.36. The above raised solution will be the one with
which will be evaluated the actuating force and torque the Aerial Manipulator is ca-
pable to apply for the specific match of motor and propeller. Therefore, by using the
above values and inserting the preferable actuating forces and torques (Fact

∣∣
E

, Tact
∣∣
E

)
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the matrix WR can be determined. Moreover, by using the (2.16) the propulsion effort
λ can be identified since the matrix D(r, F ) is invertible. In that way, the maximum
thrust force and torque the proposed system can apply are approximately λmax = 28N

and 3Nm respectively. The values of the components, proposed for the Aerial Manip-
ulator are: the motor and propeller 0.12 kg, the frame 0.66 kg, the battery 0.25 kg and
the electronic components 0.15 kg. Therefore, the total mass of the proposed system
is m = 1.90 kg and the production of a carefully studied framework was achieved by
using 3D CAD package (Solidworks) shown in Figures 2.3,2.4,2.5 and 2.6 based on
which the mass and geometry properties of the table 2.2 have been evaluated. Some
the parameters that are depicted in 2.2 will be introduced in the next Chapters.

Figure 2.3: Aerial Manipulator 3D caption of the framework (1)

Figure 2.4: Aerial Manipulator 3D caption of the framework (2)
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Figure 2.5: Aerial Manipulator 3D caption of the framework (3)

Figure 2.6: Aerial Manipulator 3D caption of the framework (4)
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Parameters Description Value Units
m Total Mass 1.90 kg

ms
Rest of

Structure Mass 1.06 kg

mthr Thruster Mass 0.12 kg

IG
Moment of

Inertia Tensor
[

0.3488 0.0683 −0.0457
0.0683 0.1588 0.0144
−0.0457 0.0144 0.4081

]
kg m2

rG
Center of

Gravity Position [0.0737 0.0083 − 0.0781]τ m

re
End-Effector

Position [−0.23 − 0.15 0.23]τ m

rs

Rest of
Structure
Center of
Gravity

[0.1267 − 0.0052 − 0.1900]τ m

J(r)
Structure Total

Volume 1.80018 m3

R
Radius of the

Rotor 0.124 m

g
Gravitational
Acceleration 9.81 m/s2

ri

r1 = [0.43 − 0.15 − 0.44]τ

m

r2 = [0.08 − 0.22 − 0.14]τ

r3 = [0.1 − 0.9− 0.2]τ

Thruster
Positions r4 = [−0.34 0.25 0.006]τ

r5 = [0.184 0.359 − 0.254]τ

r6 = [−0.22 − 0.44 − 0.04]τ

r7 = [0.51 0.79 − 0.06]τ

F̂i

F̂1 = [0.08 0.39 0.92]τ

F̂2 = [−0.33 − 0.90 0.29]τ

F̂3 = [0.13 − 0.87 − 0.48]τ

Thruster
Orientations F̂4 = [0.56 0.08 0.82]τ

F̂5 = [0.83 0.11 − 0.55]τ

F̂6 = [−0.66 0.57 − 0.49]τ

F̂7 = [−0.59 0.62 − 0.51]τ

Table 2.2: Aerial Manipulator Parameters
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Kinematic Analysis

3.1 Introduction

In this chapter the differential kinematic analysis of the proposed aerial manipulator
system is provided. It is divided into two parts. The first part deals with the differ-
ential kinematic analysis of the system rigid body, and the second one deals with the
kinematic equations of end-effector of the manipulator. In order to analyze the motion
of the proposed system, several reference frames need to be defined. As in all problems
in robotics, various quantities are represented in different coordinate frames and there
is the need for transformation of them between frames.

3.2 Deriving the Kinematic Equations of the Rigid
Body

The aerial manipulator is consisted of the main body, which is assumed to be rigid
and the end-effector which provides the contact between the robot system and the
environment. The end-effector is rigidly connected to the main body with a link and
there are no extra joints. This means that end-effector does not increase the system’s
Degrees of Freedom (DOF). The analytical mechanical design process of the system
was given in previous chapter. The goal here is to derive the kinematic equations for
the motion of the system in 3D task space.

Consider the structure in Figure 2.1 of the proposed aerial manipulator system with
reference frames. An aerial manipulator moves in six degrees of freedom (DOF). Thus,

24
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to describe its motion, we need to consider three coordinates to define translations and
three coordinates to define the orientation. These coordinates are defined using two
types of reference frames: the Earth-fixed frame and the Body-Fixed frame. In this
chapter, the derivation of the body’s motion and velocity transformations are provided.
Forces and torques that are produced by the thrusters and gravitational forces will be
used in dynamic model. They do not affect the kinematic model. The basic ideas for
the analysis in this chapter are discussed in [43], [44], [45]. The goal is to correlate the
linear and angular velocity of Body-Fixed frame with the derivatives of position and
orientation of the Inertial frame. This correlation is well-known from the robotics as
the Analytical Jacobian Matrix [46].

Due to the fact that there are several types of relative positions, orientations and
velocities, a strict mathematical formulation will be provided.

To begin the kinematic analysis, first are defined the system reference frames.

• The frame
FA = {x̂A ŷA ẑA} (3.1)

is the Earth-Fixed frame which is assumed to be an Inertial frame. The origin a of
frame FA is any convenient point on the Earth. We assume that the system moves in
near-Earth gravity and the effect of gravity is uniform over the system, thus center of
mass coincides with the center of gravity G. It is also well-known in literature as the
generalized earth coordination system.

• The moving frame
FB = {x̂B ŷB ẑB} (3.2)

is conveniently fixed to the body and is called Body-Fixed reference frame. Its origin
is the point b and rotates according to the rotation of the rigid body. Note that point
b is not coincided with the center of gravity (it is useful for the dynamic analysis in the
next chapter). The orientation of the rigid body is defined by the orientation of the
Body-Fixed frame. The position and orientation of the flying manipulator should be
described relative to the Inertial reference frame FA while linear and angular velocity
of the body should be expressed in the body-fixed coordinate system. In this point,
it should be mentioned that the reader should not be confused by the term “resolving
a vector to a frame”. This term is the same as the bibliographically well-known term
“the vector is expressed”.

Let p ∈ R3

p = [x y z]τ (3.3)
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be the position vector of frame FB relative to the Inertial frame FA, resolved in frame
FA. The vector ṗ ∈ R3 is the linear velocity of FB relative to FA with respect to FA,
resolved in frame FA. The vector v ∈ R3 is defined as

v = [vx vy vz]
τ (3.4)

as the linear velocity of FB relative to FA with respect to FA, resolved in the body-
fixed frame FB. The vector v̇ ∈ R3 is the linear acceleration of FB relative to FA with
respect to FA, resolved in the body-fixed frame FB.

The Body-Fixed frame is related to the Inertial frame by a ψ − θ − φ Euler angle
rotation sequence applied to the Inertial frame. The term Euler angles refers to the
angles of rotation ψ, θ, φ needed to go from one coordinate system to another using the
specific sequence of rotations Yaw, Pitch, Roll. These operations yield two intermediate
frames, namely

FA′ = {x̂A′ ŷA′ ẑA′} (3.5)

FA′′ = {x̂A′′ ŷA′′ ẑA′′} (3.6)

for the rotation from frame FA to FB. Therefore, the overal rotations are

FA
ψ−→̂
z
FA′

θ−→̂
y
FA′′

φ−→̂
x
FB (3.7)

It is generally satisfied for Euler angles that

− π

2
< θ <

π

2
(3.8)

Assumption (3.8) is totally crucial for the rest of the work and will be used many
times. This assumption can be likewise found in publications [47], [48]. Let now define
Θ ∈ R3

Θ = [φ θ ψ]τ (3.9)

as the Euler angles vector of frame FB relative to the Inertial frame FA. The vector
Θ̇ ∈ R3 is the angular velocity of FB relative to FA, resolved in the frame FA.
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The orientation matrices corresponding to the three rotations are given by

OB/A′′ = O1(φ) =


1 0 0

0 cφ sφ

0 −sφ cφ

 ∈ SO(3) (3.10)

OA′′/A′ = O2(θ) =


cθ 0 −sθ
0 1 0

sθ 0 cθ

 ∈ SO(3) (3.11)

OA′/A = O3(ψ) =


cψ sψ 0

−sψ cψ 0

0 0 1

 ∈ SO(3) (3.12)

where
SO(n) =

{
R ∈ Rn×n : R Rτ = In, det(R) = ±1

}
(3.13)

is the set of all orthogonal matrices with determinant equal to 1 or -1. Therefore, using
formulas (3.10)-(3.12), the orientation of the frame FA relative to the frame FB can be
calculated as

OA/B =
[
OB/A

]τ
=
[
OB/A′′ OA′′/A′ OA′/A

]τ
= [O1(φ) O2(θ) O3(ψ)]

τ

=


cθ cψ sφ sθ cψ − sψ cφ sθ cφ cψ + sφ sψ

sψ cθ sφsθsψ + cφcψ sθ sψ cφ − sφ cψ

−sθ sφ cθ cφ cθ

 (3.14)

It is defined the Jacobian transformation matrix Jt(Θ) ∈ R3×3 expressing the trans-
formation from the Βody-Fixed frame FB to the Inertial frame FA as

Jt(Θ) = OA/B (3.15)

This matrix is useful for transforming vectors from frame FB to FA and is usually
denoted in bibliography as ARB.

We define now the position vector of point b relative to point a as

~rb/a = x îA + y ĵA + z k̂A (3.16)
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For the time derivative of the unit vectors x̂A, ŷA, ẑA with reference to frame FA it
holds that

A•
x̂A =

A•
ŷA =

A•
ẑA = 0 (3.17)

since the frame vectors of FA are constant with respect to this frame. Differentiating
(3.16) with respect to frame FA we have

A•
~r b/a = ~νb/a/A = ṗx x̂A + px

A•
x̂A+ṗy ŷA + py

A•
ŷA+ṗz ẑA + pz

A•
ẑA

= ṗx x̂A + ṗy ŷA + ṗz ẑA (3.18)

and resolving in frame FA leads to

A•
~r b/a

∣∣∣∣
A

= ~νb/a/A

∣∣∣∣
A

= ṗ = [ẋ ẏ ż]τ (3.19)

Using now the definition (3.4) of the vector v we have

~νb/a/A = vx x̂B + vy ŷB + vz ẑB (3.20)

and thus ~νb/a/A resolved in body-fixed frame is given by

~νb/a/A

∣∣∣∣
B

= [vx vy vz]
τ = v (3.21)

On the other hand, if ~νb/a/A is resolved in frame FA and using the basic formula

~x

∣∣∣∣
A

= OA/B ~x

∣∣∣∣
B

(3.22)
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for any arbitrary vector ~x from [45], we get

~νb/a/A

∣∣∣∣
A

= vx x̂B

∣∣∣∣
A

+vy ŷB

∣∣∣∣
A

+vz ẑB

∣∣∣∣
A

= vx OA/B x̂B

∣∣∣∣
B

+vy OA/B ŷB

∣∣∣∣
B

+vz OA/B ẑB

∣∣∣∣
B

= vx OA/B e1 + vy OA/B e2 + vz OA/B e3

= OA/B (vx e1 + vy e2 + vz e3)

= OA/B



vx

0

0

+


0

vy

0

+


0

0

vz




= OA/B


vx

vy

vz



⇒


ẋ

ẏ

ż

 = OA/B


vx

vy

vz

 (3.23)

where e1 = [1 0 0]τ , e2 = [0 1 0]τ and e3 = [0 0 1]τ . Now, by substituting (3.15) in
(3.23) the following transformation holds

ẋ

ẏ

ż

 = Jt(Θ)


vx

vy

vz

 (3.24)

which denotes the relationship between Earth-Fixed and Body-Fixed linear velocities
of the rigid body of the proposed aerial system and can be represented in a more
compact form as

ṗ = Jt(Θ) v (3.25)

It should be noted that, any vector in Body-Fixed frame can be expressed in the
corresponding Inertial frame with transformation Jt(Θ). Now, as regards the rigid
body’s rotation motion, we define ω ∈ R3

ω = [ωx ωy ωz]
τ (3.26)

as the angular velocity of FB relative to FA resolved in the body-fixed frame FB. The
vector ω̇ ∈ R3 is the angular acceleration of FB relative to FA. It is known that (see
[45]) if n̂ is a unit vector in the direction of the rotation, then the angular velocity is
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given by
~ω = ẋ n̂ (3.27)

for an arbitrary angle x. The angular velocity can be easily related to the derivatives
of Euler angles. For a ψ − θ − φ angle rotation we have the sequence of rotations

FA
ψ−→
k̂A′

FA′ ⇐⇒ ~ωA′/A = ψ̇ ẑA′ (3.28)

FA′
θ−→
ŷA′′

FA′′ ⇐⇒ ~ωA′′/A′ = θ̇ ŷA′′ (3.29)

FA′′
φ−→
x̂B

FB ⇐⇒ ~ωB/A′′ = φ̇ x̂B (3.30)

Using the addition theorem for angular velocities and formulas (3.28)-(3.30), the an-
gular velocity of frame FB relative to FA is given by

~ωB/A = ~ωB/A′′ + ~ωA′′/A′ + ~ωA′/A

= φ̇ x̂B + θ̇ ŷA′′ + ψ̇ ẑA′ (3.31)

Using the orientation matrices from equations (3.10)-(3.12) the unit vectors of frames
FA′ , FA′′ and FB are related by the transformations

x̂B

ŷB

ẑB

 = O1(φ)


x̂A′′

ŷA′′

ẑA′′



⇐⇒


x̂A′′

ŷA′′

ẑA′′

 = [O1(φ)]
τ


x̂B

ŷB

ẑB

 =


1 0 0

0 cφ −sφ
0 sφ cφ



x̂B

ŷB

ẑB

 (3.32)

and 
x̂A′′

ŷA′′

ẑA′′

 = O2(θ)


x̂A′

ŷA′

ẑA′



⇐⇒


x̂A′

ŷA′

ẑA′

 = [O2(θ)]
τ


x̂A′′

ŷA′′

ẑA′′

 = [O2(θ)]
τ [O1(φ)]

τ


x̂B

ŷB

ẑB



=


cθ sφsθ sycφ

0 cφ −sφ
−sθ sφcθ cφcθ



x̂B

ŷB

ẑB

 (3.33)
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Substituting (3.32), (3.33) in (3.31) the following equation

~ωB/A = φ̇ x̂B + θ̇ [cφ ŷB − sφ ẑB]

+ ψ̇ [−sθ x̂B + sφcθ ŷB + cφcθ ẑB]

=
[
φ̇− sθ ψ̇

]
x̂B +

[
cφ θ̇ + sφcθ ψ̇

]
ŷB

+
[
cφcθ ψ̇ − sφ θ̇

]
ẑB (3.34)

is obtained. Resolving (3.34) in frame FB yields

~ωB/A

∣∣∣∣
B

=


φ̇− sθ ψ̇

cφ θ̇ + sφcθ ψ̇

cφcθ ψ̇ − sφ θ̇

 =


1 0 −sθ
0 cφ sφcθ

0 −sφ cφcθ



φ̇

θ̇

ψ̇

 (3.35)

By the definition (3.26) of the vector ω we have

~ωB/A

∣∣∣∣
B

= ω = [ωx ωy ωz]
τ (3.36)

Comparing equations (3.35), (3.36) we have
ωx

ωy

ωz

 =


1 0 −sθ
0 cφ sφcθ

0 −sφ cφcθ



φ̇

θ̇

ψ̇

 (3.37)

Now by computing the inverse matrix we get
φ̇

θ̇

ψ̇

 =


1 sφtθ cφtθ

0 cφ −sφ
0

sφ
cθ

cφ
cθ



ωx

ωy

ωz

 (3.38)

This relationship can be represented in compact form as

Θ̇ = Jr(Θ) ω (3.39)

where Jr(Θ) ∈ R3×3 is denoted as

Jr(Θ) =


1 sφ tθ cφ tθ

0 cφ −sφ
0

sφ
cθ

cφ
cθ

 (3.40)
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Collecting the equations (3.15), (3.40) in 6 dimensional matrix forms we have the
kinematic differential model for the rigid body of the proposed system

ξ̇ =

[
ṗ

Θ̇

]
=

[
Jt(Θ) O(3×3)

O(3×3) Jr(Θ)

]
︸ ︷︷ ︸

Jo(Θ)

[
v

ω

]
(3.41)

where ξ ∈ R6 is the augmented position and orientation vector expressed in Earth-
Fixed frame. Matrix Jt(Θ) ∈ SO(3) transforms a vector from the Body-Fixed frame
to the Inertial coordination and the matrix Jr(Θ) ∈ R3×3 denotes the relation in the
rate of change of the Euler-Angles and the Body-Fixed angular velocities of the rigid
body of the proposed system. If needed the overall analytic form, this is

ẋ

ẏ

ż

φ̇

θ̇

ψ̇


=



cθ cψ sφ sθ cψ − sψ cφ sθ cφ cψ + sφ sψ 0 0 0

sψ cθ sφsθsψ + cφcψ sθ sψ cφ − sφ cψ 0 0 0

−sθ sφ cθ cφ cθ 0 0 0

0 0 0 1 sφ tθ cφ tθ

0 0 0 0 cφ −sφ
0 0 0 0

sφ
cθ

cφ
cθ





vx

vy

vz

ωx

ωy

ωz


(3.42)

One issue that is general confused in bibliography is that the vector Θ̇ = [φ̇ θ̇ ψ̇]τ

is the time derivative (rate of change) of Euler angles, not the angular velocity of the
body with reference to to Inertial frame. In order to find the relation between the time
derivative of Euler angles and the angular velocity expressed in Inertial we can apply
the following procedure.

Using transformation (3.25) obviously the angular velocity in Body-Fixed and Inertial
frame respectively is given by the relation

~ωB/A

∣∣∣∣
A

= Jt(Θ) ~ωB/A

∣∣∣∣
B

⇔ ~ωB/A

∣∣∣∣
A

= Jt(Θ) ω (3.43)

By computing the inverse transformation from equation (3.39) the following equation
holds

ω = (Jr(Θ))−1 Θ̇ (3.44)
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Combining the previous equations (3.43), (3.44) we have

~ωB/A

∣∣∣∣
A

= Jt(Θ) (Jr(Θ))−1 Θ̇

⇔ Θ̇ =
(
Jt(Θ) (Jr(Θ))−1)−1

~ωB/A

∣∣∣∣
A

⇔ Θ̇ = (Jr(Θ))−1 (Jt(Θ))−1 ~ωB/A

∣∣∣∣
A

⇔ Θ̇ = Jr(Θ) (Jt(Θ))−1 ~ωB/A

∣∣∣∣
A

(3.45)

The matrix Jt(Θ) ∈ SO(3) is orthogonal, hence

J−1
t (Θ) = Jτt (Θ) (3.46)

Therefore, combining equations (3.45), (3.46) finally results in

Θ̇ = Jr(Θ) (Jt(Θ))τ ~ωB/A

∣∣∣∣
A

(3.47)

The last equation denotes the transformation between the rate of change of Euler
angles and the angular velocity of the body expressed in Earth-Fixed frame, terms
that are confused in many books.

3.3 Deriving the Kinematic Equations of the End-
Effector

The tasks for the proposed manipulation system require the knowledge of the absolute
position and orientation of end-effector with reference to the Earth-Fixed frame. The
aim here is to correlate the velocities of end-effector in Cartesian R6 space with the
translational and angular velocity of the rigid body. To begin with, let

FE = {x̂E ŷE ẑE} (3.48)

be a frame that is attached to the end-effector. The vector re ∈ R3 is defined as

re = [rxe rye rze ]
τ = ~re/b

∣∣∣∣
B

(3.49)
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as the position of the end-effector point e with reference to the point b, expressed in
Body-Fixed frame. Let pe ∈ R3

pe = [xe ye ze]
τ (3.50)

be the position vector of end-effector relative to the Inertial frame FA, resolved in
frame FA. The vector ṗe ∈ R3 is the linear velocity of FE relative to FA, resolved in
frame FA. The Euler angles vector Θe = [φ θ ψ]τ ∈ R3 of frame FB relative to the
Inertial frame FA and the vector Θ̇e ∈ R3 as the angular velocity of FB relative to FA,
resolved in the frame FA are also defined.

In the rest of the thesis the issue of skew-symmetric matrix S(·) will be used several
times. Skew-symmetric matrices are very important for 3D Kinematic and Dynamic
analysis. These properties will be crucial in this thesis, therefore the main properties
are presented below. We define the skew-symmetric matrix

S(ω) =


0 −ωz ωy

ωz 0 −ωx
−ωy ωx 0

 , S ∈ SS(3) (3.51)

for all arbitrary vectors ω = [ωx ωy ωz]
τ ∈ R3 where

SS(n) =
{
R ∈ Rn×n : R = −Rτ

}
(3.52)

is the set of all skew-symmetric matrices. The basic properties of skew-symmetric
matrices are

• Any cross product can be written in matrix form as

ω1 × ω2 = S(ω1) ω2 = −S(ω2) ω1, ∀ ω1, ω2 ∈ R3 (3.53)

• The determinant of a skew-symmetric matrix follows the formula

det(S) = 0, ∀ S ∈ SS(3) (3.54)

• Multiplication with rotation matrices

S(R ω) = R S(ω) Rτ , ∀ S ∈ SS(3), ∀ R ∈ SO(3), ∀ ω ∈ R3 (3.55)
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Continuing the previous analysis, the position of FE with respect to FA is given by

~re/a = ~rb/a + ~re/b (3.56)

Resoling in frame FA the following equations hold

~re/a

∣∣∣∣
A

= ~rb/a

∣∣∣∣
A

+ ~re/b

∣∣∣∣
A

⇔ pe = p+OA/B ~re/b

∣∣∣∣
B

⇔ pe = p+OA/B re

⇔ pe = p+ Jt(Θ) re (3.57)

Differentiating (3.57) and using the basic formula J̇t(Θ) = Jt(Θ) S(ω) from [47] we
have

ṗe = ṗ+ J̇t(Θ) re + Jt(θ) ṙe

= Jt(Θ) v + J̇t(Θ) re + Jt(θ) ṙe

= Jt(Θ) v + Jt(Θ) S(ω) re + Jt(θ) ṙe

= Jt(Θ) v − Jt(Θ) S(re) ω + Jt(θ) ṙe (3.58)

It should be noted here that the end-effector is not moving with reference to the rigid
body because of there are no extra joints between end-effector and the rigid body. Two
points attached to rigid body remain fixed with respect to each other for all t ≥ 0.
Thus, a relative motion between the end-effector and the rigid-body does not exist.
Invoking this result, we have that the vector re is constant in time i.e.

ṙe = 0 (3.59)

and the angular velocity of frame FE relative to FB is

~ωE/B = 0 (3.60)

The equation (3.58) is modified as

ṗe = Jt(Θ) v − Jt(Θ) S(re) ω (3.61)
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The angular velocity of frame FE relative to FA is given by

~ωE/A = ~ωE/B + ~ωB/A = ~ωB/A (3.62)

Resolving in frame FB we get

~ωE/A

∣∣∣∣
B

= ~ωB/A

∣∣∣∣
B

= ω (3.63)

Using the corresponding transformation (3.39) for the end-effector it holds that

Θ̇e = Jr(Θe) ~ωE/A

∣∣∣∣
E

= Jr(Θe) OE/B ~ωE/A

∣∣∣∣
B

= Jr(Θe) OE/B ω (3.64)

As mentioned in Chapter 2 the Body-Fixed and the End-Effector frame have the same
orientation with reference to the Inertial frame. Thus,

OE/B = I3 (3.65)

Θe = Θ (3.66)

where I3 is the 3× 3 identity matrix and the (3.64) is modified as

Θ̇e = Jr(Θe) OE/B ω ⇔ Θ̇ = Jr(Θ) ω (3.67)

Combining the last result with equation (3.61) it eventually follows that

ξ̇e =

[
ṗe

Θ̇

]
=

[
Jt(Θ) −Jt(Θ) S(re)

O(3×3) Jr(Θ)

]
︸ ︷︷ ︸

Je(Θ)

[
v

ω

]
(3.68)

where ξe ∈ R6, p = [xe ye ze]
τ ∈ R3 denotes the position of the end-effector expressed in

the Earth-Fixed frame, re is the position of end-effector with reference to Body-Fixed
frame. Equation (3.68) is the total differential kinematic equation of the proposed
system and the main objective of the chapter is achieved. The Jacobian matrix of the
system is given by

Je(Θ) =

[
Jt(Θ) −Jt(Θ) S(re)

O(3×3) Jr(Θ)

]
(3.69)



Chapter 3 Kinematic Analysis 37

where

− Jt(Θ) S(re) =

=

[
rye (sφsψ + cφcψsθ) + rze (cφsψ − cψsφsθ) rzecψcθ − rxe (sφsψ + cφcψsθ) −rxe (cφsψ − cψsφsθ)− rye cψcθ)

−rye (cψsφ − cφsψsθ)− rze (cφcψ + sφsψsθ) rxe (cψsφ − cφsψsθ) + rzecθsψ rxe (cφcψ + sφsψsθ)− rye cθsψ

reycφcθ − rzecθsφ −rzesθ − rxe cφcθ rye sθ + rxe cθsφ

]
(3.70)

The Jacobian transformation matrix Je(Θ) ∈ R6×6 relates in a straightforward way
the linear velocity ṗe and the rate of change in the Euler Angles Θ̇ of the end-effector
expressed in FA with the Body-Fixed velocities v, ω.

3.4 Kinematic Singularities

During the kinematic analysis in this section there are transformations that need to
be invertible due to inverse kinematic processes and the control of the structure that
is introduced in Chapter 6. Thus, transformation matrices Jt(Θ), Jr(Θ), Jo(Θ) and
Jt(Θ) in equations (3.25), (3.39), (3.41) and (3.68) should be for all t ≥ 0 nonsingular.
Matrix Jt(Θ) is nonsingular since det(Jt(Θ)) = 1. The other three matrices are square,
hence it can be shown that they are nonsingular by computing the corresponding
determinants as 

det(Jr(Θ)) =
1

cos(θ)
det(Jo(Θ)) =

1

cos(θ)
det(Je(Θ)) =

1

cos(θ)

(3.71)

Using the basic assumption (3.8) we conclude that all transformation matrices are
always nonsingular since the following hold

det(Jr(Θ)) 6= 0

det(Jo(Θ)) 6= 0

det(Je(Θ)) 6= 0

, ∀ − π

2
< θ <

π

2
(3.72)

3.5 Time Derivative of the Jacobian Matrix

One important issue of the control of proposed aerial manipulator is the time derivative
of the Jacobian matrix. In this section the analytical form of the time derivative of
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the Jacobian matrix will be given, which is useful for the controller design in Chapter
6. Differentiating the equation (3.69) it is obtained that

J̇e(Θ) =

[
J̇t(Θ) −J̇t(Θ) S(re)

O(3×3) J̇r(Θ)

]
(3.73)

since
ṙe = 0 ⇔ d

dt
(S(re)) = 0 (3.74)

where

J̇t(Θ)

=
∂Jt
∂φ

φ̇+
∂Jt
∂θ

θ̇ +
∂Jt
∂ψ

ψ̇

= Jt(Θ) S(ω)

= Jt(Θ) S((Jr(Θ))−1 Θ̇)

=

[
−ψ̇ cθsψ−θ̇ cψsθ φ̇(sφsψ+cφcψsθ)−ψ̇(cφcψ+sφsψsθ)+θ̇cψcθsφ φ̇(cφsψ−cψsφsθ)+ψ̇(cψsφ−cφsψsθ)+θ̇cφcψcθ
ψ̇ cψ cθ−θ̇ sψsθ θ̇cθsφsψ−ψ̇(cφspsi−cψsφsθ)−φ̇(cψsφ−cφsψsθ) ψ̇(sφsψ+cφcψsθ)−φ̇(cφcψ+sφsψsθ)+θ̇cφcθsψ

−θ̇ cθ φ̇ cφcθ−θ̇ sφsθ −φ̇ cθsφ−θ̇ cφsθ

]
(3.75)

and

J̇r(Θ) =
∂Jr
∂φ

φ̇+
∂Jr
∂θ

θ̇

=


0

θ̇ sφ + φ̇ cφcθsθ
c2θ

θ̇ cφ − φ̇ cθsφsθ
c2θ

0 −φ̇ sφ −φ̇ cφ

0
φ̇ cφcθ + θ̇ sφsθ

c2θ
− φ̇ cθsφ − θ̇ cφsθ

c2θ

 (3.76)
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Dynamic Analysis

4.1 Introduction

This chapter presents the dynamic equations of motion of the proposed aerial robot
using Newton-Euler formalism. The dynamic analysis of the system will be investigated
assuming that the system is moving freely without interaction forces and torques with
the environment. This analysis is crucial in order to provide a mechanism that shows
the way the thrust forces from the actuators affect the behavior of system in the
Cartesian space. In the end of the Chapter, the static force analysis is also provided.

4.2 Basic Assumptions

As assumed in the previous Chapter the vehicle is considered as rigid body. The
aerodynamic forces and torques on the body come from two basic sources: the pressure
distribution over the body surface and the shear stress distribution over the body
surface. As discussed in [1], the proposed aerial manipulation system is supposed to
be a low altitude flying vehicle, operating low speed flights with aerodynamic effects
having low impact on it. These aspects lead to reduced gyroscopic effects from the
propellers and, without loss of generality, to neglected aerodynamic frictions. Taking
into account all previous issues, in this Chapter the actuation forces/torques, the
gravitational forces/torques and the reaction type torques will be investigated. The
unmodeled dynamics could be considered in the robust adaptive control analysis as
unknown disturbances affecting the dynamic model of the system. In the next Chapter

39
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it will be proven that the proposed system is able to follow arbitrary trajectories
irrespectively of these disturbances.

4.3 Deriving Dynamic Equations of Motion with
Newton-Euler Formalism

In the previous chapter, the kinematic analysis of the aerial manipulator was performed
resulting in Figure 2.1. The structure is composed of a number of n thrusters and the
end-effector. The dynamic analysis of the aerial manipulator depends on the effects
of total forces and torques acting on the body. The n thrusters produce forces and
torques on the system.

Figure 4.1: Local thruster coordination system

We assume that every thruster is attached to its own coordinate system, which is
Body-Fixed as in Figure 4.1. For convenience, the Body-Fixed coordinate frame of
each thruster is written as

FTi = {x̂i, ŷi, ẑi}, i = 1, ..., n (4.1)

The frames FTi are orthogonal, right-handed and fixed to the body of the aerial robot.
Each frame origin is at the point τi, i = 1, ..., n. Points τi, i = 1, ..., n are essentially
the points on which the thrust force is applied. Basically, the thrusters are thrust
actuators that produce thrust forces for the system. From the analysis of the Chapter
2, the aerial robot is equipped with seven thrusters that actuate the system. The first
i = 1, ..., 6 are the main thrusters and the n-th is the additional one used from the
system in order to alleviate the problem of negative thrust forces.
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Let
f̂i = fx,i x̂i + fy,i ŷi + fz,i ẑi, i = 1, ..., n (4.2)

be the unit vector of each thruster in its own coordination frame. Using the basic
property of unit vectors, from (4.2) the following holds

‖f̂i‖ = 1, i = 1, ..., n⇐⇒ (fx,i)
2 + (fy,i)

2 + (fz,i)
2 = 1, i = 1, ..., n (4.3)

Unit vector f̂i defines the orientation of thruster i. It is well-known that each thruster
can produce thrust force only in one direction. We assume that this direction is parallel
to the unit vector x̂i, i = 1, ..., n (see mechanical design in [1]). We assume that
thruster unit vectors f̂i have only one component, parallel to unit vector x̂i. Thruster
i produces thrust force only in the direction of vector x̂i. Thus, we result in

fx,i = 1, fy,i = fz,i = 0, i = 1, ..., n (4.4)

The combination of equations (4.2) and (4.4) leads to

f̂i = x̂i, i = 1, ..., n (4.5)

Expressing all unit vectors f̂i in its coordination frame FTi for i = 1, .., n respectively,
results in

f̂i

∣∣∣∣
Ti

= x̂i

∣∣∣∣
Ti

=


1

0

0

 = e1, i = 1, ..., n (4.6)

Where ei is the i-th column of the identity matrix I3. Note that the vectors f̂i are the
unit orientation vectors. We define

~fpr,i = λi f̂i = λi x̂i, i = 1, ..., n (4.7)

as the propulsion vector of each thruster and λi, i = 1, ..., n the thruster force magni-
tude of its thruster. The total thrust force that is applied to the system is

~fpr,tot =
n∑
i=1

(
~fpr,i

) (4.7)
=

n∑
i=1

(λi x̂i) (4.8)

The information and the technical details for the thrusters that will compose the final
structure can be found in [1].

At this point, the total force on the aerial manipulator due to gravity, is investigated.
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The gravity is supposed to be uniform in near Earth flights. It is obvious that all
the gravitational forces are parallel to the Inertial unit vector ẑA. Furthermore, it
is assumed that the total system is consisted of the n thrusters and the rest of the
structure and since the fact that all the thrusters are similar, they have the same
mass. Let mthr be the mass of each thruster, and ms the mass of the rest of structure.
The total mass m is given by

m = n mthr +ms (4.9)

It will be assumed that the mass is constant in time, hence

ṁ = 0 (4.10)

The total gravitational force ~fgr acting on the rigid body (essentially is acting in the
Body-Fixed frame) is given by

~fgr,tot = m ~g

= m (−g ~zA)

= (m g) (−~zA) (4.11)

where ~g = g (−ẑA) is the acceleration due to the gravity and m ~g is the total weight
of the structure.

The total force acting on the vehicle in the Body-Fixed frame can be calculated as
follows

~fB = ~fpr,tot + ~fgr,tot

(4.8),(4.11)
=

n∑
i=1

(λi x̂i) +m g (−~zA) (4.12)

The overall force acting on the vehicle in the Body-Fixed can be derived by resolving
the vector ~fB in Body-Fixed frame FB as

FB =

(
n∑
i=1

(λi x̂i)

)∣∣∣∣
B

+(m g (−~zA))
∣∣∣∣
B

=
n∑
i=1

{
(λi x̂i)

∣∣∣∣
B

}
+m g

(
−~zA

∣∣∣∣
B

)
=

n∑
i=1

{
λi

(
x̂i

∣∣∣∣
B

)}
+m g

(
−~zA

∣∣∣∣
B

)
(4.13)
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By resolving unit vectors k̂A, x̂i, i = 1, ..., n in frame FB it is obtained

ẑA

∣∣∣∣
B

= OB/A ẑA

∣∣∣∣
A

=
(
OA/B

)τ
ẑA

∣∣∣∣
A

= Jτt (Θ)


0

0

1

 = Jτt (Θ) e3 (4.14)

îTi

∣∣∣∣
B

= OB/Ti x̂i

∣∣∣∣
Ti

= OB/Ti


1

0

0

 = OB/Ti e1 = Fi, ∀ i = 1, ..., n (4.15)

where OB/Ti is the orientation matrix of the frame FB relative to thruster frames
FTi , i = 1, ..., n. Using the definition of the orientation matrix [45], simply yields

OB/Ti e1 =


cos(θx̂B/x̂Ti

)

cos(θŷB/x̂Ti
)

cos(θẑB/x̂Ti
)

 , i = 1, ..., n (4.16)

where θx̂•/ŷ× ∈ [0, π] denotes the angle between vectors x̂•, ŷ×.

Substituting equations (4.14), (4.15) in (4.13) leads to

FB =
n∑
i=1

(
λi OB/Ti e1

)
︸ ︷︷ ︸

thruster propulsion forces

− m g Jτt (Θ) e3︸ ︷︷ ︸
gravitational forces

(4.17)

Equation (4.17) shows that the total force acting on the vehicle in Body-Fixed frame
is consisted of the propulsion efforts from the thrusters and the gravitational forces.

Writing equation (4.17) in matrix form we have

FB =
[
OB/T1 e1

... · · · ... OB/Tn e1

]

λ1

λ2
...
λn

−m g Jτt (Θ) e3

= F λ−m g Jτt (Θ) e3 (4.18)

Where the matrix

F =
[
F1

... · · · ... Fn

]
=
[
OB/T1 e1

... · · · ... OB/Tn e1

]
∈ R3×n (4.19)
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denotes the transformation from the actuator space to Body space (i.e. from every
thruster frames FTi to the the Body-Fixed frame FB) and the vector

λ = [λ1 · · · λn] ∈ Rn (4.20)

denotes the vector of all thrust forces.

We are proceeding now with the computation of torques that are applied in Body-Fixed
frame. We the position vectors of each thruster relative to the Body-Fixed frame as

~rτi/b = rx,i x̂B + ry,i ŷB + rz,i ẑB, i = 1, ..., n (4.21)

For notation convenience we define ri ∈ R3 as

ri = ~rτi/b

∣∣∣∣
B

=


rx,i

ry,i

rz,i

 , i = 1, ..., n (4.22)

The next step is to take into consideration the thruster torques. It is well known that
each thruster, due to its own rotation produces a reaction torque which is given by

~Mreact,i = µ ~fpr,i = µ (λi f̂i) = (µ λi) x̂i, i = 1, ..., n (4.23)

where µ is an aerodynamic coefficient which is related by the type of the thruster
introduced in Chapter 2. Note that the coefficient µ is the same for all thrusters of
the system. The total reaction torque which is produced from all the thrusters is

~Mreact,tot =
n∑
i=1

(
~Mreact,i

) (4.23)
=

n∑
i=1

{(µ λi) x̂i} = µ

{
n∑
i=1

(λi x̂i)

}
(4.24)

We define
~Mτi/b = ~rτi/b × ~fpr,i , i = 1, ..., n (4.25)
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as the torque that is produced from each thruster. The total torque acting on vehicle
in Body-Fixed frame due to the thruster propulsion is given by

~Mthr,tot =
n∑
i=1

(
~Mτi/b

)
=

n∑
i=1

(
~rτi/b × ~fpr,i

)
(4.7)
=

n∑
i=1

{
~rτi/b × (λi x̂i)

}
=

n∑
i=1

{
λi
(
~rτi/b × x̂i

)}
(4.26)

Consider now the total torque that is acting in body-fixed frame due to the fact of
gravity. We define rG ∈ R3

~rG/b = rGx x̂B + rGy ŷB + rGz ẑB

⇔ rG = ~rG/b

∣∣∣∣
B

=


rGx

rGy

rGz

 (4.27)

as the position of the center of gravity of the total system. The torque that is applied
by the gravitational force is given by

~Mgr,tot = ~rG/b × ~fgr,tot

(4.11)
= ~rG/b × (m g (−ẑA))

= − (m g)
(
~rG/b × ẑA

)
(4.28)

The total torque acting on vehicle in Body-Fixed frame can be computed using equa-
tions (4.26), (4.24) and (4.28) as

~MB = ~Mthr,tot + ~Mreact,tot + ~Mgr,tot

=
n∑
i=1

{
λi
(
~rτi/b × x̂i

)}
+ µ

{
n∑
i=1

(λi x̂i)

}
− (m g)

(
~rG/b × ẑA

)
(4.29)
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By resolving the equation (4.29) in Body-Fixed frame gives

MB =

{
n∑
i=1

{
λi
(
~rτi/b × x̂i

)}} ∣∣∣∣
B

+

{
µ

{
n∑
i=1

(λi x̂i)

}}∣∣∣∣
B

−
{
(m g)

(
~rG/b × ẑA

)} ∣∣∣∣
B

=
n∑
i=1

{
λi
(
~rτi/b × x̂i

) ∣∣∣∣
B

}
+ µ

{
n∑
i=1

(λi x̂i)

∣∣∣∣
B

}

− (m g)
(
~rG/b × ẑA

) ∣∣∣∣
B

=
n∑
i=1

{
λi

(
~rτi/b

∣∣∣∣
B

)
×
(
x̂i

∣∣∣∣
B

)}
+ µ

{
n∑
i=1

λi

(
x̂i

∣∣∣∣
B

)}

− (m g)

(
~rG/b

∣∣∣∣
B

)
×
(
ẑA

∣∣∣∣
B

)
(4.30)

Substituting the (4.14), (4.15), (4.22), (4.27) in the equation (4.30) we have

MB =
n∑
i=1

{
λi
(
ri ×OB/Ti e1

)}
+ µ

{
n∑
i=1

(
λi OB/Ti e1

)}
− (m g) (rG × Jτt (Θ) e3)

(3.53)
=

n∑
i=1

[
λi S(ri) OB/Ti e1

]
+ µ

{
n∑
i=1

(
λi OB/Ti e1

)}
− (m g) [S(rG) J

τ
t (Θ) e3]

=
n∑
i=1

[
λi S(ri) OB/Ti e1

]
︸ ︷︷ ︸

thruster propulsion torques

+µ

{
n∑
i=1

(
λi OB/Ti e1

)}
︸ ︷︷ ︸

thruster reaction torques

−m g S(rG) J
τ
t (Θ) e3︸ ︷︷ ︸

gravitational torques

(4.31)

Equation (4.31) implies that the total torque acting on the vehicle in the Body-Fixed
frame is consisted of the propulsion thrust torques, the gravitational torques and the
torques due to thruster own rotation.
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Writing equation (4.31) in matrix form we get

MB =
[
S(r1) OB/T1 e1

... · · · ... S(rn) OB/Tn e1

]

λ1

λ2
...
λn



+ µ
[
OB/T1 e1

... · · · ... OB/Tn e1

]

λ1

λ2
...
λn


−m g S(rG) J

τ
t (Θ) e3

= E λ+ µ F λ−m g S(rG) J
τ
t (Θ) e3 (4.32)

Where

E =
[
E1

... · · · ... En

]
=
[
S(r1) OB/T1 e1

... · · · ... S(rn) OB/Tn e1

]
∈ R3×n (4.33)

and F, λ as in (4.19), (4.20). Combining equation (4.18) and (4.32) we have the
generalized vector ΛB ∈ R6 of forces and torques acting on aerial robot in Body-Fixed
frame is obtained as

ΛB =

[
FB

MB

]

=

[
F λ−m g Jτt (Θ) e3

(E + µ F ) λ−m g S(rG) J
τ
t (η) e3

]

=

[
F λ

(E + µ F ) λ

]
−

[
m g Jτt (Θ) e3

m g S(rG) J
τ
t (Θ) e3

]

=

[
F

E + µ F

]
λ−

[
m g I(3×3)

m g S(rG)

]
Jτt (Θ) e3

=

[
F

E

]
λ+

[
O(3×6)

µ F

]
λ−m g

[
I(3×3)

S(rG)

]
Jτt (Θ) e3



Chapter 4 Dynamic Analysis 48

=

[
F

E

]
λ︸ ︷︷ ︸

propulsion forces/torques

+

[
O(3×6)

µ F

]
λ︸ ︷︷ ︸

reaction torques

−m g

[
I(3×3)

S(rG)

]
Jτt (Θ) e3︸ ︷︷ ︸

gravitational forces/torques

= N̄ λ−m g

[
I(3×3)

S(rG)

]
Jτt (Θ) e3 (4.34)

where here the matrix N̄ is given by

N̄ =

[
F

E + µ F

]
∈ R6×6 (4.35)

The matrix N̄ ∈ R6 is known in bibliography as actuator configuration matrix or
thruster allocation matrix.

There are several techniques which can be used to derive the equations of motions of a
rigid body with 6 DOF. The Newton-Euler formalism has been adopted to this work.
The dynamic equations with respect to the Body-Fixed frame can be conveniently
written (main ideas are discussed extensively in [44], [45]) as

M

[
v̇

ω̇

]
+ C(ν)

[
v

ω

]
= ΛB

⇔M

[
v̇

ω̇

]
+ C(ν)

[
v

ω

]
=

[
FB

MB

]

⇔M

[
v̇

ω̇

]
+ C(ν)

[
v

ω

]
=

[
F

E + µ F

]
λ−m g

[
I(3×3)

S(rG)

]
Jτt (Θ) e3 (4.36)

where

M =

[
m I3 −m S(rG)

m S(rG) IB

]
(4.37)

is the inertia matrix,

C(ν) =

[
m S(ω) −m S(ω) S(rG)

m S(rG) S(ω) −S(IB ω)

]
(4.38)

is the Coriolis-Centipetal matrix, ν = [vτ ωτ ]τ ∈ R6 is the vector of Body-Fixed
velocities. The term IB denotes the well-known inertia tensor matrix expressed in FB.
Using the parallel axis theorem (also well known as Steiners theorem) from [43] we
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have
IB = IG −m S(rG) S(rG) (4.39)

where IG is the inertia tensor relative to the body’s center of gravity.

Solving equation (4.36) with respect to [v̇τ ω̇τ ]τ we get[
v̇

ω̇

]
= −M−1C(ν)

[
v

ω

]
+M−1

[
F

E + µ F

]
λ

−m g M−1

[
I3

S(rG)

]
Jτt (Θ) e3 (4.40)

The (4.40) can be written in a more convenient matrix form as

ν̇ = H(ν) +G(ξe) +N λ

⇔ ν̇ = B(ξe, ν) +N λ (4.41)

where the matrices in (4.41) are defined as

H(ν) = −M−1 C(ν) ν (4.42)

N =M−1

[
F

E + µ F

]
(4.43)

G(ξe) = −m g M−1

[
I(3×3)

S(rG)

]
Jτt (Θ)e3 (4.44)

B(ξe, ν) = H(ν) +G(ξe), B : R6 × R6 → R6 (4.45)

Equation (4.41) constitutes the final dynamic equation of motion in matrix form of
the proposed system. Combining the kinematic model from (3.68) with the dynamic
model (4.41) the aerial manipulator model including kinematics and dynamics can be
written as

(S) :

ξ̇e = J(ξe) ν

ν̇ = B(ξe, ν) +N λ
(4.46)

This convenient final form is appropriate for the nonlinear controller design that will
be introduced in Chapter 6. All the parameters that appear in the (4.46) can be found
in Table 2.2. The dynamic model (4.46) is highly nonlinear with coupling between
the translational and rotational dynamics. Additionally, there is coupling between
inputs and output channels in which the nonlinearity of the system makes the control
design of the proposed system a real challenge. On the other hand, if we consider
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the control problem of the aerial manipulator to be position tracking with attitude
regulating, then the system is square in which with six actuators and six outputs (
3D position and three attitude angles ). This highlights the positive aspect of the
proposed configuration in terms of controller design compared to other systems that
are in general underactuated systems.

The matrix M can be written in 6 column as

M =

[
m I(3×3) −m S(rG)

m S(rG) IB

]

=



m 0 0 0 mrGz −mrGy
0 m 0 −mrGz 0 mrGx

0 0 m mrGy −m rGx 0

0 −mrGz mrGy cxx Ixy −mrGxrGy Ixz −mrGxrGz

mrGz 0 −mrGx Ixy −mrGxrGy cyy Ixz −mrGxrGz

−mrGy mrGx 0 Ixz −mrGxrGz Iyz −mrGyrGz czz


where

cxx = Ixx +mr2Gy +mr2Gz (4.47)

cyy = Iyy +mr2Gx +mr2Gz (4.48)

czz = Izz +mr2Gx +mr2Gy (4.49)

4.4 Properties of the Matrices in the Dynamic Anal-
ysis

In this section some important properties of the matrices that are involved in the
dynamic model of the proposed system will be given. These properties are important
since they affect the controller design in Chapter 6 crucially.

To begin with, matrix C(ν) is time dependent and matrices M, IG are time indepen-
dent, hence we have that

Ṁ = İG = 0, Ċ(ν) 6= 0 (4.50)

Continuing the analysis, the determinants of matrices M and IG can be easily cal-
culated by Symbolic MATLAB Toolbox. The corresponding determinants satisfy the
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formula
det(M) = m3 det(IG) (4.51)

This formula shows that the singularity of matrix M depends on the correspond of
matrix IG. Nevertheless, from the mechanical design in Chapter 2 we have that IG > 0,
cond(IG) = 3.25. Therefore, matrix M is nonsingular with

M > 0, cond(M) = 9.5 (4.52)

For the Coriolis/Centipetal matrix it can be easily shown that

C(ν) = −Cτ (ν) (4.53)

The matrix N is positive definite with small condition number

N > 0, cond(N) = 6.63 (4.54)

which is the main result of Chapter 2 and [1] and the control-oriented optimization
that the system was mainly designed.

4.5 Static Force Analysis

We assume now that the proposed aerial robot is needed to contact with the envi-
ronment for accomplishing different tasks. In this situation, the aerial manipulator
is in contact with an object and is assumed to be stationary. Consequently, static
equations must be provided. In this situation forces and torques are applied to the
end-effector from the environment. These forces and torques acts in the whole system,
thus the dynamic equation is modified and the force/torque transformations between
the reference frames of the system must be provided.

The principle of virtual work yields a set of linear equations that relate the resultant
force-torque six vector, called a wrench, that acts on the end-effector, to the joint
torques of the robot. If the end-effector wrench is known, then a direct calculation
yields the joint torques.

The inverse statics problem seeks the end-effector wrench associated with a given set
of joint torques, and requires the inverse of the Jacobian matrix. As in the case of
inverse velocity analysis, at singular configurations this problem cannot be solved.
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When the system is in contact with the environment (actually the end-effector is
in contact with the environment) forces and torques are applied at the tip of the
manipulator. In this case, there are interaction forces and torques that are applied
to the end-effector. Consequently, in the dynamic equation of the system, forces and
torques that will be resolved in the Body-Fixed frame will appear. Remember that
all the vectors appearing in the dynamic equation are expressed in Body-Fixed frame.
With all these considerations, the dynamic equations of motion with system interaction
with the environment are modified as

M

[
v̇

ω̇

]
+ C(ν)

[
v

ω

]
=

[
F

E + µ F

]
λ−m g

[
I(3×3)

S(rG)

]
Jτt (Θ) e3 −

[
fe

Me

]
(4.55)

where fe,Me ∈ R3 are the magnitude of the contact force and torque respectively
that are exerted by the manipulator’s end-effector on the environment expressed in
the Body-Fixed frame. The minus (-) in the right part of the equation denotes the
reaction force/torque that is applied from the environment to the system ( Newton’s
Third Law) [46], [49]. Using the notation from the previous chapters, it is clear that

fe = ~fe

∣∣∣∣
B

(4.56)

Me = ~Me

∣∣∣∣
B

(4.57)

Note that in (4.55) all the vectors are expressed in Body-Fixed frame. It is well-known
from the robotics [43, 46], the manipulator wrench vector

he =

[
fe
∣∣
A

Me

∣∣
A

]
∈ R6 (4.58)

where ~fe

∣∣∣∣
A

, ~Me

∣∣∣∣
A

are the interaction force and torque respectively that applied at

the end-effector expressed in Inertial frame. The wrench vector is expressed in the
Inertial frame, thus the transformation from Body-Fixed frame to the Inertial must be
provided. This can be done using the well-known kineto-statics duality from [43, 46].
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Hence, we get [
~fe
∣∣
B

~Me

∣∣
B

]
= Jτ (ξe)

[
fe
∣∣
A

Me

∣∣
A

]

⇔

[
~fe
∣∣
B

~Me

∣∣
B

]
=

[
Jt(Θ) −Jt(Θ) S(re)

O(3×3) Jr(Θ)

]τ
he

⇔

[
~fe
∣∣
B

~Me

∣∣
B

]
=

[
(Jt(Θ))τ O(3×3)

S(re) (Jt(Θ))τ (Jr(Θ))τ

]
he (4.59)

where the formula (S(re))
τ = −S(re) was invoked. Substituting the (4.59) in the

dynamic equation (4.55) the following equation holds

M

[
v̇

ω̇

]
+ C

[
v

ω

]
=

[
F

E + µ F

]
λ−m g

[
I(3×3)

S(rG)

]
Jτt (Θ) e3 − J(ξe)

τ he (4.60)

Under the assumption that the aerial manipulator is stationary while it is applying a
force/moment he to an object, the dynamics can reduced to statics. Thus, considering
that v = v̇ = ω = ω̇ = 0 the following statics equation is delivered from (4.60)

0 =

[
F

E + µ F

]
λ−m g

[
I(3×3)

S(rG)

]
Jτt (Θ) e3 − Jτ (ξe) he

⇔

[
F

E + µ F

]
λ = m g

[
I(3×3)

S(rG)

]
Jτt (Θ) e3 + Jτ (ξe) he (4.61)

The equation (4.61) is the static force equation when the aerial manipulator is in
interaction with the environment. This equation will be widely used in the case of the
force/torque control which will not be investigated in this thesis.
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Nonlinear Control of The Aerial
Manipulator

5.1 Introduction

In this chapter we will attempt to control the motion of the system in the case where
there are no interaction forces and torques from the environment applied to the system.
Firstly, we will conduct a complete analysis using nonlinear geometry control tools
in order to study the controllability and the feedback linearizability of the system.
Following this, a backstepping control will be designed in order to control the absolute
position and orientation of the end-effector. Due to the fact that the system is in
the presence of actuator failures, unmodeled dynamics and external disturbances, the
controller needs to be adaptive and robust to improve the performance of the system.

5.2 Basic Definitions from Nonlinear Control The-
ory

Before proceeding with the analysis some important definitions will be presented.
Vector signals are time varying vector functions, defined for nonnegative time as
x(t) : {0} ∪ R+ → R, where t denotes the time. Consider a vector signal x(t) =

[x1(t) · · · xn(t)]τ ∈ Rn. At any time t, x(t) is a vector. As t changes, x(t) represents
a vector field. A function is called smooth, if its every component has continuous
partial derivatives of all orders. A vector field f : Rn → Rn is a function which assigns

54
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a n-dinemnsional vector to every point in the n-dimensional space Rn. Having two
smooth vector fields f, g : Rn → Rn and a smooth scalar function h : Rn → R, the Lie
derivative of h with respect to the vector field f is a new function Lfh : Rn → R given
by

L
(0)
f h = h (5.1)

L
(1)
f h = ∇h f (5.2)

L
(k)
f h = Lf L

(k−1)
f h, k = 1, 2, ... (5.3)

LgLf h = ∇(Lfh) g = ∇(∇h f) g (5.4)

where the function ∇h(x) denotes the gradient of scalar function h(x) and it is denoted
as a 1× n row vector

∇h(x) = ∂h

∂x
=

[
∂h

∂x1

... · · · ... ∂h

∂xn

]
(5.5)

Similarly, given a vector field f(x) = [f1(x) · · · fn(x)]τ , the Jacobian of f(x) is denoted
by ∇f(x) and is a n× n matrix

∇f(x) =


∂f1
∂x1

· · · ∂f1
∂xn... . . . ...

∂fn
∂x1

· · · ∂fn
∂xn

 (5.6)

Let us now define two smooth vector fields f, g : Rn → Rn. The Lie Bracket of f and
g is a third vector field defined recursively by

[f, g](0) = g (5.7)

[f, g](1) = ∇g f −∇f g (5.8)

[f, g](k) =
[
f, [f, g](k−1)

]
, k = 1, 2, ... (5.9)

A signal x(t) = [x1(t) · · · xn(t) ]τ ∈ Rn is bounded if x(t) ∈ L∞, that is, ||x(t)||∞ ≤
K, ∀t ≥ 0, for some K > 0 where

||x(t)||∞ = max
1≤i≤n

|xi(t)| (5.10)
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5.3 Controllability Conditions

Consider now the overall system model from (4.46)

(S) :

ξ̇e = J(ξe) ν

ν̇ = B(ξe, ν) +N λ
(5.11)

The state vector of the model is defined as

x =

[
ξe

ν

]
∈ R12 (5.12)

and let
u = λ =

[
u1 · · · u6

]
∈ R6 (5.13)

be the control input, namely the thrust forces from actuators as alluded in the previous
Chapter. System (5.11) can be written in the well-known nonlinear control affine form
[50]

ẋ = f(x) +
6∑
i=1

gi ui (5.14)

where the smooth vector field f : R12 → R12 is given by

f(x) =

[
J(ξe)

B(ξe, ν)

]
(5.15)

and is called drift vector field. The smooth vector fields gi : R12 → R12, i = 1, ..., 6

are defined as

gi =

[
O(6×6)

N

]
(i)

(5.16)

where the notation X(i) denote the ith column of matrix X. The vector fields gi, i =
1, ..., 6 are called control input vector fields. The accessibility distribution is defined
as

G(x) = span {g1, ..., g6, [f, g1] , ..., [f, g6]} (5.17)

The dimension of the distribution G(x) can be calculated from [51] as

dim(G(x)) = rank [g1, ..., g6, [f, g1] , ..., [f, g6]] (5.18)
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By computing the lie brackets

∇gi = 0, ∀ i = 1, ..., 6 (5.19)

[f, gi] = ∇gi f −∇f gi = −∇f gi, i = 1, ..., 6 (5.20)

the following conditions hold

rank [g1, ..., g6, [f, g1] , ..., [f, g6]] = 12 = n, ∀ x ∈ R12, x5 6= ±π
2

(5.21)

det [g1, ..., g6, [f, g1] , ..., [f, g6]] = 30.78 cos(θ) 6= 0, ∀ x ∈ R12, x5 6= ±π
2

(5.22)

The (5.22) holds due to the assumption (3.8) that −π
2
< θ < π

2
. The (5.21), (5.22)

result in dim(G(x)) = 12 = n, ∀ x ∈ R12, x5 6= ±π
2

and the system is locally con-
trollable from any x0 ∈ R12, x5 6= ±π

2
. Further analysis for nonlinear controllability is

discussed in [50], [52].

5.4 Feedback Linearization Conditions

Feedback linearization is an approach to nonlinear control design which has attracted
a great deal of research interest in recent years (see [51, 53, 54, 55]). The central idea
of the approach is to algebraically transform a nonlinear system dynamics into a linear
and controllable one so that the linear control techniques can be applied. The basic
assumption for this methodology is the exact knowledge of the nonlinear model of the
system. In this section the mathematical conditions to prove that the system is exact
feedback linearizable are provided.

Let

h(t) = [h1(t) · · · h6(t) ]τ

= [x(t) y(t) z(t) φ(t) θ(t) ψ(t)]τ (5.23)

be the desired output of the system. System (5.14) has a vector relative degree at a
point x0 ∈ R12

r =
[
r1 r2 r3 r4 r5 r6

]
=
[
2 2 2 2 2 2

]
(5.24)
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since

Lgj L
(0)
f hi(x0) = 0, ∀ 1 ≤ i ≤ 6, ∀ 1 ≤ j ≤ 6 (5.25)

Lgj L
(1)
f hi(x0) 6= 0, for at least one 1 ≤ j ≤ 6 (5.26)

for all x in a neighborhood of x0 and the 6× 6 matrix

A(x0) =


Lg1 L

(r1−1)
f h1 Lg2 L

(r1−1)
f h1 · · · Lg6 L

(r1−1)
f h1

Lg1 L
(r2−1)
f h2 Lg2 L

(r2−1)
f h2 · · · Lg6 L

(r2−1)
f h2

... ... . . . ...
Lg1 L

(r6−1)
f h6 Lg2 L

(r6−1)
f h6 · · · Lg6 L

(r6−1)
f h6



=


Lg1 Lf h1 Lg2 Lf h1 · · · Lg6 Lf h1

Lg1 Lf h2 Lg2 Lf h2 · · · Lg6 Lf h2
... ... . . . ...

Lg1 Lf h6 Lg2 Lf h6 · · · Lg6 Lf h6

 (5.27)

is nonsingular at x0 since rank(A(x0)) = 6 and det(A(x0)) = −55.47 cos(θ) =

−55.47 cos(x5), ∀x5 6= ±π
2
.

By defining the distributions

∆i(x) = span{ [f, gj]
(k) : i = 0, . . . , 5, j = 1, . . . , 6, k = 1, . . . , i } (5.28)

the system (5.11) is full state space exact feedback linerizable (see [51, 55]) since the
following conditions holds

•
6∑
i=1

ri = 12

• rank(g) = 6

• dim[ ∆i(x) ] = 6, i = 0, ..., 5

• All the distributions ∆i, i = 0, ..., 4 are involutive

5.5 Controller Design

In this section, we will proceed with the controller design. A backstepping controller
design is adopted. Integrator backstepping is a nonlinear control design technique that



Chapter 5 Nonlinear Control of The Aerial Manipulator 59

employs Lyapunov synthesis to recursively determine controllers for systems satisfying
a particular cascaded structure called “strict feedback form”.

Backstepping has become a very popular control design method for nonlinear control
systems because can guarantee global stability, tracking and transient performance for
strict-feedback systems. It is a recursive controller design methodology, in which the
construction of both feedback control laws and the associated Lyapunov functions is
systematic, following a step-by-step algorithm.

Strong properties of global or regional stability and tracking are built into the system
in a number of steps, which is never higher than the system order. While feedback lin-
earization methods require precise models and often cancel some useful nonlinearities,
backstepping designs offer a choice of design tools for accommodation of uncertain
nonlinearities and can avoid wasteful cancellations. Backstepping designs are more
flexible and do not force the designed system to appear linear. They can avoid can-
cellations of useful nonlinearities and ofted introduce additional nonlinear terms to
improve transient performance.

In contrast to feedback linearization technique which stipulates the cancellation of all
nonlinearities including useful ones, backstepping affords the control engineer not only
the choice of retaining all beneficial nonlinearities, but also great freedom in select-
ing the final control law. Furthermore, backstepping can accommodate, by explicitly
accounting for, large nonlinearities and uncertainties in the system’s model, ignored
dynamics, input and measurement disturbances.

Another advantage is that the backstepping controller can be used to relax the match-
ing conditions, which are blocked in the traditional Lyapunov design. By matching
condition we mean that the nonlinearity enter the system at the same point as the
control input, thus it can be canceled. Therefore, backstepping require no match-
ing conditions. Backstepping is a well known technique extensively used in nonlinear
control with applications in helicopters, quadrotors and other aerial systems. The
technique was comprehensively addresed by Krstic, Kanellakopoulos and Kokotovic in
[56].

The idea of Backstepping is to design a controller for the nonlinear system recursively
by considering some of the state variables as “virtual controls” and designing inter-
mediate control laws for them. It starts with a subsystem which is stabilizable with
a known feedback law for a known Lyapunov function, and then adds to its input an
integrator. For the augmented subsystem a new stabilizing feedback law is explicitly
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designed and shown to be stabilizing for a new Lyapunov function. The process con-
tinues till the explicit construction of the controller and the Lyapunov function for the
complete system.

We will now recall the nonlinear system model from (5.11). The system (5.11) is a
cascaded highly nonlinear system in the well-known ([57], [58]) strict feedback form.
This form is defined in general as

(S1) :

ẋ1 = f0(x1) + g0(x1) x2

ẋ2 = f1(x1, x2) + g1(x1, x2) u
(5.29)

By comparing equations (5.11), (5.29) we get

x1 = ξe, x2 = ν, f0 = 0, g0 = J(ξe), f1 = B(ξe, ν), g1 = N (5.30)

This particular form of the nonlinear system of the aerial manipulator is appropriate
for applying the backstepping recursive controller design method.

A manipulation task is usually given in terms of desired position and orientation of
the end-effector. The objective of this section is to design a controller of the proposed
aerial manipulator ensuring that the position pe(t) and the orientation Θ(t) of the
end-effector tracks the desired Cartesian trajectory

ξdes(t) =
[
xdes(t) ydes(t) zdes(t) φdes(t) θdes(t) ψdes(t)

]τ
∈ R6 (5.31)

asymptotically. Thus, a nonlinear controller λ(ξe, ν) should be designed in order to
guarantee that

lim
t→∞

‖ξe(t)− ξdes‖ = 0 (5.32)

and all closed loop signals required in controller design should remain bounded for all
t ≥ 0.

The system (5.11) is separated in kinematic and dynamic model. The objective of
the kinematic control is to find suitable vehicle trajectories ν(t) that correspond to
a desired end-effector trajectory ξe(t). The objective of the dynamic controller is to
find suitable control inputs λi(t), i = 1, .., 6 to drive the desired velocities ν(t) from
kinematic controller.
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It is generally known in control theory that due to imperfect modelling, the system dy-
namics are in presence of parameters uncertainties, actuation failures, unmodeled dy-
namics, modelling errors and external disturbances. All this parameters, may decrease
the performance of the closed loop system and cause system instabilities. Therefore,
the nonlinear controller should be designed in such a way that are taken into consid-
eration and are tackled these problems in order to increase closed loop efficiency.

The reasons which made us to take into consideration of the uncertainties and the dis-
turbances in the system dynamic model (5.11) are the imperfect mathematical mod-
eling from Chapters 3, 4 and the unpredictable changes in the physical environment.
Control techniques, such as robust control, can yield good performance for these cases.
It is possible to determine the bounds on the system uncertainties and design a ro-
bust control scheme, which guarantees stable control of the system as long as the
uncertainties stay within these bounds. However, robust control does not enhance its
performance with time. When a certain amount of error is present in a robust control
system, the error gets carried on even in a repetitive task. The solution to this problem
is the use of adaptive control methods.

Mathematical modelling is the central point in almost all control system design meth-
ods. However, no physical system can be perfectly modeled and there is a mismatch
between the model and the physical system. Even if an exact model of the physical
system is available, one type of uncertainty may still arise from some exogenous dis-
turbances which might affect the control system via imperfect measurement of state
or output. On the other hand, other types of uncertainties may be present due to
the lack of knowledge about the physical system. Even if the model is qualitatively
correct, i.e. the structure of the model is exact, the actual parameter values of the
physical system could hardly be obtained exactly.

Robustness of a control system determines the capability of the controller to be unaf-
fected by the uncertainties. Since uncertainties will always be present, robustness is
always a desired property when designing control systems.

Another problem is the change of system dynamics due to changes in the environment
in an unexpected manner. For example, although the exact mathematical model of
the aerial manipulator is usually available, there may be abrupt changes in the loads
that the manipulator handles. This kind of unknown changes in the dynamics lead to
an inexact model and create difficulties in its control.

Additionally, the controller should be able to handle problems such as battery drains,
miscalculated mechanical properties, measurement bias and noise. To cope with these
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uncertainties, the controller needs to be adaptive. The Adaptive Control tries to
remove the effects of the uncertainties in the system model. Te objective of the adaptive
control is to provide a mechanism such that the model parameters converge to the true
values, even if the actual system parameters change unexpectedly.

Due to the fact that the model plan is in presence of uncertainties, an adaptive back-
stepping controller is the best solution. The uncertain plant parameters will be es-
timated on-line since the adaptive controller is a dynamic system with an online pa-
rameter estimation. The stability analysis will be held with the well-known Lyapunov
Stability Theory.

Taking all the above issues into consideration a robust adaptive backstepping controller
will be designed in order to tackle them. Firstly, we consider the system as

(S) :

ξ̇ = J(ξe) ν

ν̇ = B(ξe, ν) +N θ?λ λ+ d(ξe, ν, t)
(5.33)

where θ?λ = diag{θ?1, ... , θ?6} ∈ R6×6. The uncertainty in θ?λ is introduced to model
the control actuation failures and the modelling errors, in the sense that there may
exist uncertain control gains or the designer may have incorrectly estimated the system
control effectiveness. The entries θ?λ are bounded in the set [θmin, θmax] = [0.1, 1]. This
means that if for example θ?i = 0.5 for an arbitrary i = 1, . . . , 6 then the i-th acuator
has 50 % controller effectiveness reduction. For Multi Input-Multi Output systems,
such as the proposed system in the aerospace engineering field, it is usually useful to
simultaneously estimate and adapt to differences between the real and design actuator
effectiveness. The system is in the presence of disturbance d(ξe, ν, t) : R6×R6×R+ →
R6 with

d(ξe, ν, t) =
[
d1(ξe, ν, t) d2(ξe, ν, t) · · · d6(ξe, ν, t)

]τ
(5.34)

where di are continuous functions on (ξe, ν) and piecewise continuous on t ≥ 0 rep-
resenting the disturbances of the system. The disturbances might be time-dependent
noise, constant disturbances, time varying disturbances, unmodeled nonlinear dynam-
ics and external or environmental disturbances.

It is assumed for the disturbances that there are unknown positive constants ∆i, i =

1, ..., 6 such that
|di(ξe, ν, t)| ≤ ∆i δi(ξe, ν), i = 1, ..., 6 (5.35)

where δi(ξe, ν) : R6 × R6 → R6 are known continuous and differentiable positive func-
tions. This assumption is very crucial since ensures that the disturbances d(ξe, ν, t) will
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not become unbounded for all t ≥ 0. The matrix of unknown disturbance constants is
defined as

∆ =
[
∆1 ∆2 · · · ∆6

]τ
∈ R6 (5.36)

Since the matrix ∆ and the constants ∆i are unknown they should be estimated online
through the adaptation parameter updates laws. Let

∆̂ =
[
∆̂1 ∆̂2 · · · ∆̂6

]τ
∈ R6 (5.37)

θ̂λ = diag{θ̂1 . . . θ̂6} ∈ R6×6 (5.38)

denote the matrix of estimations of the unknown parameters. The matrix of the
parameter estimations errors are given by

∆̃ =
[
∆̃1 ∆̃2 · · · ∆̃6

]τ
∈ R6 (5.39)

θ̃λ = diag{θ̃1 . . . θ̃6} ∈ R6×6 (5.40)

Obviously, we have
∆̃ = ∆̂−∆ (5.41)

The value of ∆̃ will generally be unknown. However, it is not required by the control
law (only the estimations ∆̂ are required), it is used only in the Lyapunov design
process. We are proceeding now with the controller design suitable for the proposed
system.

In order to design the controller of the system (5.33), the following assumptions are
required:

Assumption 1: The states of the system ξe, ν are available for measurement ∀ t ≥ 0

for the following control development.

Assumption 2: The desired trajectories ξdes are known bounded functions of time
(ξdes ∈ L∞) with known and bounded derivatives (ξ̇des, ξ̈des ∈ L∞).

Assumption 3: It is assumed for all t ≥ 0 that −π
2
< θ(t) < π

2
. This ensures that the

Jacobian matrix is nonsingular since det(J(ξe)) = 1/cθ. This assumption is likewise
utilized in [47], [48].

• Step 1: To begin with the backstepping controller design, let the position-orientation
error of the end-effector z1 ∈ R6 be given by

z1 = ξe − ξdes (5.42)
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By differentiating (5.42) and using (3.68) we get

ż1 = ξ̇e − ξ̇des

= J(ξe) ν − ξ̇des (5.43)

We view ν as a control variable and we define a virtual control law for (5.43), say
νdes ∈ R6, and let z2 ∈ R6 be an error signal representing the difference between the
virtual and actual controls of (5.43) as

z2 = ν − νdes

⇔ ν = νdes + z2 (5.44)

Thus, in terms of the new state variable, (5.43) can be rewritten as

ż1 = J(ξe) (νdes + z2)− ξ̇des

= J(ξe) νdes + J(ξe) z2 − ξ̇des (5.45)

Consider now a positive definite and radially unbounded (V (z1) → ∞, as ‖z1‖ → ∞)
candidate Lyapunov function as the squared norm of error z1

V1(z1) =
1

2
‖z1‖2 =

1

2
zτ1z1 (5.46)

Its time derivative is
V̇1(z1) =

1

2
żτ1z1 +

1

2
zτ1 ż1 (5.47)

Noting that
żτ1z1 = zτ1 ż1 (5.48)

we arrive at

V̇1(z1) = 2
1

2
zτ1 ż1

= zτ1

{
J(ξe) νdes + J(ξe) z2 − ξ̇des

}
= zτ1

{
J(ξe) νdes − ξ̇des

}
+ zτ1J(ξe)z2 (5.49)

The stabilization of z1 can be obtained by designing an appropriate virtual control law

νdes = J−1(ξe)
{
ξ̇des −K1z1

}
(5.50)
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where matrix K1 ∈ R6×6, K1 = Kτ
1 > 0 is diagonal, positive definite and represents

the first controller gain to be designed. Hence, the time derivative of V1 becomes

V̇1 = −zτ1K1z1 + zτ1J(ξe)z2 (5.51)

The first term on the right-hand side in (5.51) is stable, and the second term will be
canceled at the next step.

• Step 2: For the second step, we take into consideration the time derivative of error
(5.44)

ż2 = ν̇ − ν̇des (5.52)

= B(ξe, ν) +N θ?λ λ+ d(ξe, ν, t)− ν̇des (5.53)

Choosing the augmented radial unbounded Lyapunov function as

V2(z1, z2, ∆̃, θ̃λ) = V1 +
1

2
‖z2‖2 +

1

2
∆̃τ Γ−1

∆ ∆̃ +
1

2
tr(θ̃τλ Γ−1

θ θ̃λ) (5.54)

where Γ∆ = Γτ∆ > 0,Γ∆ ∈ R6×6,Γθ = Γτθ > 0,Γθ ∈ R6×6 are diagonal adaptation gain
matrices. The notation tr(·) denotes the matrix trace. The adaptive parameters will
be adjusted in the adaptive control that are given below. The time derivative of the
constant parameter estimation errors are

˙̃∆ =
˙̂
∆− ∆̇ =

˙̂
∆ ∈ R6 (5.55)

˙̃θi =
˙̂
θi − θ̇?i =

˙̂
θi, ∀i = 1, . . . , 6 (5.56)

The time derivative of the augmented Lyapunov (5.54) can be calculated by

V̇2(z1, z2, ∆̃, θ̃λ) = V̇1(z1) + zτ2 ż2 +
1

2
˙̃∆τ Γ−1

∆ ∆̃ +
1

2
∆̃τ Γ−1

∆
˙̃∆ +

1

2
tr( ˙̃θτλ Γ−1

θ θ̃λ)

+
1

2
tr(θ̃τλ Γ−1

θ
˙̃θλ)

= −zτ1K1z1 + zτ1J(ξe)z2 + zτ2 ż2 + 2
1

2
∆̃τ Γ−1

∆
˙̃∆ + 2

1

2
tr(θ̃τλ Γ−1

θ
˙̃θλ)

= −zτ1K1z1 + zτ1J(ξe)z2 + zτ2 ż2 + ∆̃τ Γ−1
∆

˙̂
∆ + tr(θ̃τλ Γ−1

θ
˙̂
θλ) (5.57)

It should be noted that
zτ1J(ξe)z2 = zτ2J

τ (ξe)z1 (5.58)
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By substituting the last equation in (5.57) we have

V̇2(z1, z2, ∆̃, θ̃λ) = −zτ1K1z1 + zτ2J
τ (ξe)z1 + zτ2 ż2 + ∆̃τ Γ−1

∆
˙̂
∆ + tr(θ̃τλ Γ−1

θ
˙̂
θλ)

= −zτ1K1z1 + zτ2 {Jτ (ξe)z1 + ż2}+ ∆̃τ Γ−1
∆

˙̂
∆ + tr(θ̃τλ Γ−1

θ
˙̂
θλ)

= −zτ1K1z1 + zτ2 {Jτ (ξe)z1 +B(ξe, ν) +N θ?λ λ+ d(ξe, ν, t)− ν̇des}

+ ∆̃τ Γ−1
∆

˙̂
∆ + tr(θ̃τλ Γ−1

θ
˙̂
θλ)

= −zτ1K1z1 + zτ2 {Jτ (ξe)z1 +B(ξe, ν) +N θ?λ λ− ν̇des}

+ zτ2 d(ξe, ν, t) + ∆̃τ Γ−1
∆

˙̂
∆ + tr(θ̃τλ Γ−1

θ
˙̂
θλ)

(5.59)

Writing vector z2 as
z2 =

[
z2,1 · · · z2,6

]τ
∈ R6 (5.60)

and using basic mathematic inequalities properties the following statements hold

zτ2 d(ξe, ν, t) =
[
z2,1 · · · z2,6

] 
d1(ξe, ν, t)

...
d6(ξe, ν, t)

 =
6∑
i=1

z2,i di(ξe, ν, t)

≤
6∑
i=1

|z2,i di(ξe, ν, t)| ≤
6∑
i=1

|z2,i| |di(ξe, ν, t)|

≤
6∑
i=1

|z2,i| ∆i δi(ξe, ν, t)

=
[
|z2,1| · · · |z2,6|

] 
∆1 δ1(ξe, ν, t)

...
∆6 δ6(ξe, ν, t)



= {sgn(z2) z2}τ


∆1 δ1(ξe, ν, t)

...
∆6 δ6(ξe, ν, t)



= zτ2 {sgn(z2)}τ


∆1 δ1(ξe, ν, t)

...
∆6 δ6(ξe, ν, t)



= zτ2 sgn(z2)


∆1 δ1(ξe, ν, t)

...
∆6 δ6(ξe, ν, t)

 (5.61)
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where

sgn(x) =


1, if x > 0

0, if x = 0

−1, if x < 0

(5.62)

sgn(z2) = {sgn(z2)}τ = diag{sgn(z2,1), ... , sgn(z2,6)} ∈ R6×6 (5.63)

By adding and subtracting the terms ∆̂i δi(ξe, ν), i = 1, ..., 6 in the equation (5.61) we
obtain

zτ2 d(ξe, ν, t) ≤ zτ2 sgn(z2)


∆1 δ1(ξe, ν)± ∆̂1 δ1(ξe, ν)

...
∆6 δ6(ξe, ν)± ∆̂6 δ6(ξe, ν)



= zτ2 sgn(z2)


(∆1 − ∆̂1) δ1(ξe, ν) + ∆̂1 δ1(ξe, ν)

...
(∆6 − ∆̂6) δ6(ξe, ν) + ∆̂6 δ6(ξe, ν)



= zτ2 sgn(z2)


−∆̃1 δ1(ξe, ν) + ∆̂1 δ1(ξe, ν)

...
−∆̃6 δ6(ξe, ν) + ∆̂6 δ6(ξe, ν)



= −zτ2 sgn(z2)


∆̃1 δ1(ξe, ν)

...
∆̃6 δ6(ξe, ν)

+ zτ2 sgn(z2)


∆̂1 δ1(ξe, ν)

...
∆̂6 δ6(ξe, ν)


= −zτ2 sgn(z2) ε(ξe, ν) ∆̃ + zτ2 sgn(z2) ε(ξe, ν) ∆̂ (5.64)

where
ε(ξe, ν) = {ε(ξe, ν)}τ = diag{δ1(ξe, ν), ... , δ6(ξe, ν)} (5.65)

Using inequality (5.64) the Lyapunov function (5.59) becomes

V̇2(z1, z2, ∆̃, θ̃λ)

≤ −zτ1K1z1 + zτ2 {Jτ (ξe)z1 +B(ξe, ν) +N θ?λ λ− ν̇des}

+ zτ2 sgn(z2) ε(ξe, ν) ∆̂− zτ2 sgn(z2) ε(ξe, ν) ∆̃ + ∆̃τ Γ−1
∆

˙̂
∆ + tr(θ̃τλ Γ−1

θ
˙̂
θλ)

= −zτ1K1z1 + zτ2

{
Jτ (ξe)z1 +B(ξe, ν) +N θ?λ λ− ν̇des + sgn(z2) ε(ξe, ν) ∆̂

}
− zτ2 sgn(z2) ε(ξe, ν) ∆̃ + ∆̃τ Γ−1

∆
˙̂
∆ + tr(θ̃τλ Γ−1

θ
˙̂
θλ) (5.66)
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Invoking the property

zτ2 sgn(z2) ε(ξe, ν) ∆̃ = ∆̃τ {sgn(z2) ε(ξe, ν)}τ z2
= ∆̃τ {ε(ξe, ν)}τ{sgn(z2)}τ z2
= ∆̃τ ε(ξe, ν) sgn(z2) z2 (5.67)

the Lyapunov function (5.66) becomes

V̇2(z1, z2, ∆̃, θ̃λ)

≤ −zτ1K1z1 + zτ2

{
Jτ (ξe)z1 +B(ξe, ν) +N θ?λ λ− ν̇des + sgn(z2) ε(ξe, ν) ∆̂

}
− ∆̃τ ε(ξe, ν) sgn(z2) z2 + ∆̃τ Γ−1

∆
˙̂
∆ + tr(θ̃τλ Γ−1

θ
˙̂
θλ)

= −zτ1K1z1 + zτ2

{
Jτ (ξe)z1 +B(ξe, ν) +N θ?λ λ− ν̇des + sgn(z2) ε(ξe, ν) ∆̂

}
+ ∆̃τ {Γ−1

∆
˙̂
∆− ε(ξe, ν) sgn(z2) z2}+ tr(θ̃τλ Γ−1

θ
˙̂
θλ) (5.68)

By adding and subtracting the terms zτ2 N θ̂λ λ in the equation (5.68) we get

V̇2(z1, z2, ∆̃, θ̃λ)

≤ −zτ1K1z1 + zτ2

{
Jτ (ξe)z1 +B(ξe, ν) +N θ?λ λ±N θ̂λ λ− ν̇des + sgn(z2) ε(ξe, ν) ∆̂

}
+ ∆̃τ {Γ−1

∆
˙̂
∆− ε(ξe, ν) sgn(z2) z2}+ tr(θ̃τλ Γ−1

θ
˙̂
θλ)

≤ −zτ1K1z1 + zτ2

{
Jτ (ξe)z1 +B(ξe, ν) +N θ̂λ λ− ν̇des + sgn(z2) ε(ξe, ν) ∆̂

}
− zτ2 N θ̃λ λ+ ∆̃τ {Γ−1

∆
˙̂
∆− ε(ξe, ν) sgn(z2) z2}+ tr(θ̃τλ Γ−1

θ
˙̂
θλ) (5.69)

Invoking the basic property aτ b = tr(b aτ ), ∀ a, b ∈ Rn the following holds

−zτ2 N θ̃λ λ = −λτ {N θ̃λ}τ z2
= −λτ θ̃τ N τ z2

= − λτ︸︷︷︸
aτ

θ̃τλ N
τ z2︸ ︷︷ ︸
b

= −tr(θ̃τλ N τ z2 λ
τ ) (5.70)



Chapter 5 Nonlinear Control of The Aerial Manipulator 69

By substituting the (5.70) in (5.69) we get

V̇2(z1, z2, ∆̃, θ̃λ)

≤ −zτ1K1z1 + zτ2

{
Jτ (ξe)z1 +B(ξe, ν) +N θ̂λ λ− ν̇des + sgn(z2) ε(ξe, ν) ∆̂

}
− tr(θ̃τλ N τ z2 λ

τ ) + ∆̃τ {Γ−1
∆

˙̂
∆− ε(ξe, ν) sgn(z2) z2}+ tr(θ̃τλ Γ−1

θ
˙̂
θλ)

= −zτ1K1z1 + zτ2

{
Jτ (ξe)z1 +B(ξe, ν) +N θ̂λ λ− ν̇des + sgn(z2) ε(ξe, ν) ∆̂

}
+ ∆̃τ {Γ−1

∆
˙̂
∆− ε(ξe, ν) sgn(z2) z2}+ tr{θ̃τλ(Γ−1

θ
˙̂
θλ −N τ z2 λ

τ )} (5.71)

Aiming to reinforce robustness of the system, a σ-Modification adaptive control design
method will be introduced for the parameter estimation update law ˙̂

∆ in order to
compensate the unknown disturbances effectively. This method is discussed extensively
in [59], [60]. Given the form of V̇2 from (5.71), the adaptive control law for the nonlinear
system (S) to be designed is

λ(ξe, ν, ∆̂, θ̂λ) = (θ̂λ)
−1 N−1

{
ν̇des − Jτ (ξe)z1 −B(ξe, ν)− sgn(z2) ε(ξe, ν) ∆̂−K2 z2

}
(5.72)

and the corresponding parameter estimator update law with σ-Modification method is

˙̂
∆ = Γ∆{ε(ξe, ν) sgn(z2) z2 − σ ∆̂} (5.73)

The K2 ∈ R6×6, K2 = Kτ
2 > 0 is diagonal, positive definite second controller gain

matrix to be designed and σ > 0 is the σ-modification parameter to prevent the
parameter drift (see [59], [60]).

Substituting the control laws (5.72), (5.73) in Lyapunov equation (5.71) we obtain

V̇2(z1, z2, ∆̃) ≤ −zτ1K1z1 − zτ2K2z2 − σ ∆̃τ ∆̂ + tr{θ̃τλ(Γ−1
θ

˙̂
θλ −N τ z2 λ

τ )} (5.74)

At this point, a projection operator method (see [61]) for the parameter update law ˙̂
θλ

will be introduced. Projection methods are well-known algorithms in adaptive control
theory that can guarantee fast adaptation, can improve robustness of the adaptive
backstepping design and can ensure that the estimation parameters remain bounded
in compact sets for all time. The parameter adaptation law should be chosen to ensure
three rules. The first rule is to ensure that

tr{θ̃τλ(Γ−1
θ

˙̂
θλ −N τ z2 λ

τ )} ≤ 0 (5.75)

in order to guarantee that the Lyapunov function will not be increasing. The second is
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to guarantee that the estimation of the unknown parameters θ̂λ should remain bounded
for all t ≥ 0. The last rule is to avoid singularity of the term (θ̂λ)

−1 from (5.72). Taking
all these into consideration, the parameter update law is designed as

˙̂
θλ = Γθ Proj(θ̂λ, N τ z2 λ

τ ) (5.76)

where by defining the sets

Ω = {θi ∈ R : θmax ≤ θi ≤ θmax, ∀ i = 1, . . . , 6} (5.77)

Ωδ = {θi ∈ R : θmax − δ ≤ θi ≤ θmax + δ, ∀ i = 1, . . . , 6} (5.78)

the projection operator is defined as

[
Proj(θ̂λ, y)

]
(ij)

=



[
1 +

θmax−θ̂ij
δ

]
yij, if θ̂ij > θmax and yij > 0[

1 +
θ̂ij−θmin

δ

]
yij, if θ̂ij < θmin and yij < 0

yij, else

(5.79)

for every element (ij), i = 1, . . . , 6, j = 1, . . . , 6 of the matrices θ̂λ, y where

y = N τ z2 λ
τ (5.80)

The parameter δ > 0 is to be designed. The projection operator (5.79) by definition
ensures that

tr{θ̃τλ(Γ−1
θ

˙̂
θλ −N τ z2 λ

τ )} ≤ 0

⇔ tr{θ̃τλ(Proj(θ̂λ, N τ z2 λ
τ )−N τ z2 λ

τ )} ≤ 0

⇔ tr{θ̃τλ(Proj(θ̂λ, y)− y)} ≤ 0 (5.81)

which means that the projection operator contributes to the negative semi-nagativeness
of the Lyapunov function. Furthermore in can be verified that this rule satisfies

θ̂i(0) ∈ Ω ⇒ θ̂i(t) ∈ Ωδ, ∀t ≥ 0 (5.82)

hence, θ̂λ remains bounded for all t ≥ 0 and the term (θ̂λ)
−1 in (5.72) is protected

away from singularity.
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Therefore, using the projection operator property (5.81) the Lyapunov function results
in

V̇2(z1, z2, ∆̃, θ̃λ) ≤ −zτ1K1z1 − zτ2K2z2 − σ ∆̃τ ∆̂ (5.83)

Now invoking the Rayleigh-Ritz theorem from [59], [62]

λmin(P )‖x‖2 ≤ xτPx ≤ λmax(P )‖x‖2 (5.84)

∀x ∈ Rn, ∀ P ∈ Rn×n, P = P τ > 0

where λmin(P ), λmax(P ) denote the minimum and the maximum eigenvalue of the
matrix P , we have that

−zτ1K1z1 ≤ −λmin(K1)‖z1‖2 (5.85)

−zτ2K2z2 ≤ −λmin(K2)‖z2‖2 (5.86)

where obviously is λmin(K1), λmin(K2) > 0. Using (5.85), (5.86) in (5.83) we have

V̇2(z1, z2, ∆̃) ≤ −λmin(K1)‖z1‖2 − λmin(K2)‖z2‖2 − σ ∆̃τ ∆̂ (5.87)

A significant property in the adaptive control theory is that for every θ̃, θ̂, θ ∈ Rp, the
following equality holds

θ̃τ θ̂ =
1

2
‖θ̃‖2 + 1

2
‖θ̂‖2 − 1

2
‖θ‖2 (5.88)

Using this property in (5.87) the Lyapunov function results in

V̇2(z1, z2, ∆̃, θ̃λ) ≤ −λmin(K1)‖z1‖2 − λmin(K2)‖z2‖2

− σ {1
2
‖∆̃‖2 + 1

2
‖∆̂‖2 − 1

2
‖∆‖2}

≤ −λmin(K1)‖z1‖2 − λmin(K2)‖z2‖2

− σ

2
‖∆̃‖2 − σ

2
‖∆̂‖2 + σ

2
‖∆‖2 (5.89)

It is obvious that the following inequality holds

− σ

2
‖∆̃‖2 − σ

2
‖∆̂‖2 + σ

2
‖∆‖2 ≤ −σ

2
‖∆̃‖2 + σ

2
‖∆‖2 (5.90)

Then, (5.89) finally results in

V̇2(z1, z2, ∆̃) ≤ −λmin(K1)‖z1‖2 − λmin(K2)‖z2‖2 −
σ

2
‖∆̃‖2 + w̄ (5.91)
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where w̄ is the strictly positive term

w =
σ

2
‖∆‖2 > 0 (5.92)

From (5.91) it follows that V̇2(z1, z2, ∆̃) ≤ 0 when

‖z2‖ >
√

w̄

λmin(K1)
(5.93)

or ‖z2‖ >
√

w̄

λmin(K2)
(5.94)

or ‖∆̃‖ >
√

2 w̄

σ
(5.95)

Thus, both the errors z1, z2 and the parameter estimation error ∆̃ are uniformly ulti-
mately bounded (see [59]) with respect to the sets

Ω1 =

{
z1 ∈ R6 : ‖z1‖ ≤

√
w

λmin(K1)

}
(5.96)

Ω2 =

{
z2 ∈ R6 : ‖z2‖ ≤

√
w

λmin(K2)

}
(5.97)

Ω∆ =

{
∆̃ ∈ R6 : ‖∆̃‖ ≤

√
2 w

σ

}
(5.98)

One important issue associated with the controller design is the analytical form of
the time derivative of the Jacobian matrix J(ξe) and the virtual control vector νdes.
The time derivative of the Jacobian J(ξe) was derived in Chapter 3 from the equation
(3.73). The ν̇des can be calculated from (5.50) as

νdes = J−1(ξe)
{
ξ̇des −K1z1

}
⇔ J(ξe) νdes = ξ̇des −K1z1

⇔ J̇(ξe) νdes + J(ξe) ν̇des = ξ̈des −K1ż1

⇔ ν̇des = J−1(ξe){ξ̈des − J̇(ξe) νdes −K1ż1} (5.99)

Invoking from the last results that the z1, z2 are bounded in the sets Ω1,Ω2 and
ξdes, νdes ∈ L∞ from assumption 1, then ξe, ν ∈ L∞. Since ∆̃,∆, θ̂λ, θ

?
λ are bounded

then ∆̂, θ̃λ ∈ L∞. Using (5.99) yields that ν̇des ∈ L∞ and invoking this, from (5.72)
yields that λ ∈ L∞. Therefore, it was proven that all closed loop signals are bounded.
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The resulting closed-loop error dynamics system for new states z1, z2 ∈ R6, with all
signals having been proven to be bounded, can be depicted in matrix form as[

ż1

ż2

]
=

[
−K1 J(ξe)

−Jτ (ξe) −K2

] [
z1

z2

]
+

[
O(6×1)

d(ξe, ν, t)− sgn(z2) ε(ξe, ν) ∆̂

]
(5.100)

˙̂
∆ = Γ∆{ε(ξe, ν) sgn(z2) z2 − σ ∆̂} (5.101)
˙̂
θλ = Γθ Proj(θ̂λ, N τ z2 λ

τ ) (5.102)

Although it is written in a linear-like form, this system is highly nonlinear.

The aforementioned analysis of the controller design in this section could be summa-
rized by the following theorem.

Theorem: Given the dynamic model (5.33) utilized with parameters from Table (2.2),
under the assuptions 1-3, the control law (5.72) and the adaptive parameters update
laws (5.73), (5.76), all closed signals are bounded and asymptotic tracking

lim
t→∞

‖ξe − ξdes‖ = 0 (5.103)

is achieved.

While observing the controller design procedure, it should be noted that the only loss
of controllability of the proposed system is due to the singularity of matrices J(ξe) and
N . The first was discussed in Chapter 3, thus due to assumption (3.8) is well-defined
and the second matrix has full rank with well-defined and small condition number
which is a vital result for the control oriented optimization from [1].



Chapter 6

Simulation Results

In this chapter, the results of extended numerical simulations performed in computer
with the MATLAB/Simulink Environment are presented in order to demonstrate the
flight performance of the proposed framework for the aerial robot in dynamic environ-
ments. Consequently, the effectiveness of the control law designed in Chapter 6 can
be verified. The dynamic model in (5.33) is utilized with system parameters which are
depicted in Table 2.2.

A task for the proposed system modeled in the previous Chapters is usually speci-
fied in terms of a desired trajectory for the end-effector Cartesian position pe(t) =

[xe(t) ye(t) ze(t)]
τ and corresponding Cartesian orientation Θ(t) = [φ(t) θ(t) ψ(t)]τ .

The proposed aerial robot is required to move from the Earth-Fixed Frame to a desired
position-orientation in 3D Cartesian space, namely Stabilization Scenario, or to track
a desired position-orientation trajectory, namely trajectory tracking Scenario.

Each Scenario is accompanied with two Figures with the position/orientation errors
and the required thrust forces respectively. The simulations parameters are depicted
in the corresponding Tables. The 3D animation simulations (videos in .avi file format)
for the proposed system demonstrated with Matlab Software and the video files are
available with the CD included with the printed version of this thesis. The geometric
transformations and the frame graphics animation were carried out using the Corke
MATLAB Toolbox [63].

74
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Scenario 1: In this scenario the end-effector of the proposed aerial manipulator is
forced to stabilize at the position pe,des = [−2 − 2 5]τ with regulated desired ori-
entation Θ(t) = [0 0 0]τ with reference to Earth-Fixed frame and 10 % controller
effectiveness reduction. The parameters for this simulation are depicted in Table 6.1
and the corresponding simulation results in Figures 6.1,6.2.

Parameter Description Value

ξe(0)
Initial End-Effector
Position/Orientation [−0.23 0.015 0.23 0 0 0]τ

p(0)
Initial Body-Frame

Position [0 0 0]τ

ν(0)
Initial Body-Fixed

Velocities [0 0 0 0 0 0]τ

θ̂(0)
Initial Parameter

Estimation Conditions 0.7 diag{1, 1, 1, 1, 1, 1}

∆̂(0)
Initial Parameter

Estimation Conditions [0, 0, 0, 0, 0, 0]τ

K1
Gain of kinematic

Controller 0.3 diag{1, 1, 1, 1, 1, 1}

K2
Gain of Dynamic

Controller 8 diag{1, 1, 1, 1, 1, 1}

θ?λ
Unknown Actuator

Parameters 0.9 diag{1, 1, 1, 1, 1, 1}

Γθ Adaptation Gain Matrix 0.1 diag{1, 1, 1, 1, 1, 1}
Γ∆ Adaptation Gain Matrix 13 diag{1, 1, 1, 1, 1, 1}
σ σ-Modificatioon Gain 0.3
d(t) Disturbance [2 sin(t) 0.1 0.2 0.5 0.7 2 cos(t)]τ
δ Projection Parameter 0.05

Table 6.1: Simulation Parameters for Scenario 1

Scenario 2: In this scenario the end-effector of the proposed aerial manipulator is
forced to stabilize at the position pe,des = [2 3 2]τ with regulated desired orientation
Θ(t) =

[
π
4

− π
3
π
6

]τ with reference to Earth-Fixed frame and 20 % controller effective-
ness reduction. The parameters for this simulation are depicted in Table 6.2 and the
corresponding simulation results in Figures 6.3,6.4.
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Figure 6.1: Position and Orientation Errors in Scenario 1
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Figure 6.2: Required Thrust Forces Using Redistribution Algorithm in Scenario 1
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Parameter Description Value

ξe(0)
Initial End-Effector
Position/Orientation [−0.23 0.015 0.23 0 0 0]τ

p(0)
Initial Body-Frame

Position [0 0 0]τ

ν(0)
Initial Body-Fixed

Velocities [0 0 0 0 0 0]τ

θ̂(0)
Initial Parameter

Estimation Conditions 0.7 diag{1, 1, 1, 1, 1, 1}

∆̂(0)
Initial Parameter

Estimation Conditions [0, 0, 0, 0, 0, 0]τ

K1
Gain of kinematic

Controller 0.3 diag{1, 1, 1, 1, 1, 1}

K2
Gain of Dynamic

Controller 6 diag{1, 1, 1, 1, 1, 1}

θ?λ
Unknown Actuator

Parameters 0.8 diag{1, 1, 1, 1, 1, 1}

Γθ Adaptation Gain Matrix 0.2 diag{1, 1, 1, 1, 1, 1}
Γ∆ Adaptation Gain Matrix 8 diag{1, 1, 1, 1, 1, 1}
σ σ-Modificatioon Gain 1.5
d(t) Disturbance [1.2 0.1 sin(t) 0.2 sin(t) 0.5 0.7 2 cos(t)]τ
δ Projection Parameter 0.05

Table 6.2: Simulation Parameters for Scenario 2

Scenario 3: In this scenario the end-effector of the proposed aerial manipulator is
forced to track the trajectory pe,des(t) = [sin(t) cos(t) 3 sin(t)]τ with regulated orien-
tation Θ(t) = [0 0 0]τ with reference to Earth-Fixed frame and 15% controller effec-
tiveness reduction. The parameters for this simulation are depicted in Table 6.3 and
the corresponding simulation results in Figures 6.5,6.6.
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Figure 6.3: Position and Orientation Errors in Scenario 2
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Figure 6.4: Required Thrust Forces Using Redistribution Algorithm in Scenario 2
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Parameter Description Value

ξe(0)
Initial End-Effector
Position/Orientation [−0.23 0.015 0.23 0 0 0]τ

p(0)
Initial Body-Frame

Position [0 0 0]τ

ν(0)
Initial Body-Fixed

Velocities [0 0 0 0 0 0]τ

θ̂(0)
Initial Parameter

Estimation Conditions 0.7 diag{1, 1, 1, 1, 1, 1}

∆̂(0)
Initial Parameter

Estimation Conditions [0, 0, 0, 0, 0, 0]τ

K1
Gain of kinematic

Controller diag{1, 1, 1, 0.1, 0.1, 0.1}

K2
Gain of Dynamic

Controller 10 diag{1, 1, 1, 1, 1, 1}

θ?λ
Unknown Actuator

Parameters 0.85 diag{1, 1, 1, 1, 1, 1}

Γθ Adaptation Gain Matrix 0.2 diag{1, 1, 1, 1, 1, 1}
Γ∆ Adaptation Gain Matrix 15
σ σ-Modificatioon Gain 2.5
d(t) Disturbance [sin(t) 0.2 0.5 cos(t) 0.5 0.5]τ

δ Projection Parameter 0.05

Table 6.3: Simulation Parameters for Scenario 3

Scenario 4: In this scenario the end-effector of the proposed aerial manipulator is
forced to track the trajectory pe,des = [cos(0.5t) sin(0.5t) 1.5 + 0.5t]τ with regulated
desired orientation Θ(t) = [0 0 0]τ with reference to Earth-Fixed frame and 10 %
controller effectiveness reduction. The parameters for this simulation are depicted in
Table 6.4 and the corresponding simulation results in Figures 6.7,6.8.
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Figure 6.5: Position and Orientation Errors in Scenario 3
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Figure 6.6: Required Thrust Forces Using Redistribution Algorithm in Scenario 3
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Parameter Description Value

ξe(0)
Initial End-Effector
Position/Orientation [−0.23 0.015 0.23 0 0 0]τ

p(0)
Initial Body-Frame

Position [0 0 0]τ

ν(0)
Initial Body-Fixed

Velocities [0 0 0 0 0 0]τ

θ̂(0)
Initial Parameter

Estimation Conditions 0.7 diag{1, 1, 1, 1, 1, 1}

∆̂(0)
Initial Parameter

Estimation Conditions [0, 0, 0, 0, 0, 0]τ

K1
Gain of kinematic

Controller diag{0.5, 0.5, 0.5, 0.3, 0.3, 0.3}

K2
Gain of Dynamic

Controller 8 diag{1, 1, 1, 1, 1, 1}

θ?λ
Unknown Actuator

Parameters 0.90 diag{1, 1, 1, 1, 1, 1}

Γθ Adaptation Gain Matrix 0.5 diag{1, 1, 1, 1, 1, 1}
Γ∆ Adaptation Gain Matrix 5
σ σ-Modificatioon Gain 0.5
d(t) Disturbance [0.5 cos(t) 0.5 0.5 sin(t) 0.5]τ
δ Projection Parameter 0.05

Table 6.4: Simulation Parameters for Scenario 4

Scenario 5: In this scenario the end-effector of the proposed aerial manipulator is
forced to track the trajectory pe,des = [cos(0.5t) sin(0.5t) 1.5 + 0.5t]τ with regulated
desired orientation Θ(t) =

[
π
3
π
6

− π
4

]τ with reference to Earth-Fixed frame and 10 %
controller effectiveness reduction. The parameters for this simulation are depicted in
Table 6.5 and the corresponding simulation results in Figures 6.9,6.10.
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Figure 6.7: Position and Orientation Errors in Scenario 4
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Figure 6.8: Required Thrust Forces Using Redistribution Algorithm in Scenario 4
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Parameter Description Value

ξe(0)
Initial End-Effector
Position/Orientation [−0.23 0.015 0.23 0 0 0]τ

p(0)
Initial Body-Frame

Position [0 0 0]τ

ν(0)
Initial Body-Fixed

Velocities [0 0 0 0 0 0]τ

θ̂(0)
Initial Parameter

Estimation Conditions 0.7 diag{1, 1, 1, 1, 1, 1}

∆̂(0)
Initial Parameter

Estimation Conditions [0, 0, 0, 0, 0, 0]τ

K1
Gain of kinematic

Controller diag{0.8, 0.8, 0.8, 0.3, 0.3, 0.3}

K2
Gain of Dynamic

Controller 5 diag{1, 1, 1, 1, 1, 1}

θ?λ
Unknown Actuator

Parameters 0.90 diag{1, 1, 1, 1, 1, 1}

Γθ Adaptation Gain Matrix 0.5 diag{1, 1, 1, 1, 1, 1}
Γ∆ Adaptation Gain Matrix 13
σ σ-Modificatioon Gain 1.5
d(t) Disturbance [1.2 0.8 cos(t) 0.8 0.9 cos(t)]τ
δ Projection Parameter 0.05

Table 6.5: Simulation Parameters for Scenario 5
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Figure 6.9: Position and Orientation Errors in Scenario 5
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Chapter 7

Conclusion and Future Directions

Aerial robots physically interacting with the environment could be very useful for
many applications. In this thesis, we proposed a completely novel aerial manipulator
that interacts with the environment via an end-effector by applying desired forces and
torques in six DoF task space. We have presented extensively all necessary issues
relevant to the kinematic differential equations, geometry transformations, static and
dynamic equations which constitute a well-defined mechanism for the free motion of
the proposed system in space.

It has proven that the system, with the proposed geometry, which is the result of tech-
nical optimization problems, is exact controllable and linearizable. A robust adaptive
backstepping controller is designed in order to control the exact position and orienta-
tion of the end-effector in 3D space. Simulations from Chapter 6 illustrated that the
system performs desired manipulation tasks efficiently irrespectively of the presence of
unmodeled dynamics, modelling errors, actuation failures, external and environmen-
tal disturbances. Figures from Chapter 6 depicted that the controller provides fast
adaptation of the unknown parameters, accurate disturbance rejection of unknown
disturbances and fair transient performance in the steady state. Furthermore, the re-
quired thrust force is within actuators bounds, which underlie an extremely significant
result in the field of aerial robotics. All these conditions are sufficient to lead us to the
final construction of the system.

With regards to the future directions, first an extensively bending stress study for
every bracket of the system should be performed, in order to choose the exact ma-
terial that will compose the system. This is vital issue in order to avoid possible
oscillations among the brackets during the flight tests. Future work mainly involves
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the construction of the proposed aerial robot in the Control Systems Lab NTUA and
the conduction of experimental trials for the proposed framework with the actual sys-
tem. The experiments should be done in order to verify the theoretical results of this
thesis. The integrated system needs to be equipped with force/torque sensors which
will have the ability to measure the required actuation forces and torques from the
end-effector. This will enable us to perform more advanced manipulation tasks such
as carrying loads, interaction with the environment, industrial inspections and coop-
eration with other aerial robots since the end-effector will be able to apply accurate
desired force/torque in an object. Furthermore, concerning the system identification,
a nonlinear system approximation with Neural Networks will be ideal, providing more
effectiveness in the controller robustness design. Ultimately, an embedded controller
software should be programmed in C++, for the implementation of the high-level con-
troller that was designed in this thesis in order to control the aerial robot in real-time
applications.
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