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ABSTRACT
This paper addresses the problem of navigation control of a general class of 2nd order
uncertain nonlinear multi-agent systems in a bounded workspace, which is a subset
of R3, with static obstacles. In particular, we propose a decentralized control protocol
such that each agent reaches a predefined position at the workspace, while using local
information based on a limited sensing radius. The proposed scheme guarantees that
the initially connected agents remain always connected. In addition, by introducing
certain distance constraints, we guarantee inter-agent collision avoidance as well
as collision avoidance with the obstacles and the boundary of the workspace. The
proposed controllers employ a class of Decentralized Nonlinear Model Predictive
Controllers (DNMPC) under the presence of disturbances and uncertainties. Finally,
simulation results verify the validity of the proposed framework.

KEYWORDS
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Robust Control; Collision Avoidance.

1. Introduction

During the last decades, decentralized control of multi-agent systems has gained a
significant amount of attention due to the great variety of its applications, including
multi-robot systems, transportation, multi-point surveillance and biological systems.
The main focus of multi-agent systems is the design of decentralized control protocols
in order to achieve global tasks, such as consensus [1–4], in which all the agents
are required to converge to a specific point and formation [5–11], in which all the
agents aim to form a predefined geometrical shape. At the same time, the agents
might need to fulfill certain transient properties, such as network connectivity [12–14]
and/or collision avoidance [15–17]. In parallel, another topic of research is multi-
agent navigation in both the robotics and the control communities, due to the need
for autonomous control of multiple robotic agents in the same workspace. Important
applications of multi-agent navigation arise also in the fields of air-traffic management
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and in autonomous driving by guaranteeing collision avoidance with other cars and
obstacles. In this work, we study the problem of multi-agent navigation with network
connectivity and collision avoidance properties.

The literature on approaching the problem of navigation of multi-agent systems is
rich. In [15], ([18]), a decentralized control protocol of multiple non-point agents (point
masses) with collision avoidance guarantees is considered. The problem is approached
by designing navigation functions which have been initially introduced in [19]. A decen-
tralized potential field approach for navigation of multiple unicycles (aerial vehicles)
with collision avoidance has been considered in [20, 21]; Robustness analysis and sat-
uration in control inputs are not addressed. In [22], the collision avoidance problem
for multiple agents in intersections has been studied. An optimal control problem is
solved, with only time and energy constraints. Authors in [23] proposed decentralized
controllers for multi-agent navigation and collision avoidance with arbitrarily shaped
obstacles in 2D environments. Furthermore, connectivity maintenance properties are
not taken into consideration in all the aforementioned work.

Other approaches in multi-agent navigation propose solutions to decentralized op-
timization problems. In [24], a decentralized receding horizon protocol for formation
control of linear multi-agent systems is proposed. Authors in [25] considered the path-
following problems for multiple Unmanned Aerial Vehicles (UAVs) in which a decen-
tralized optimization method is proposed through linearization of the dynamics of
the UAVs. A DNMPC along with potential functions for collision avoidance has been
studied in [26]. A feedback linearization framework along with Model Predictive Con-
trollers (MPC) for multiple unicycles in leader-follower networks for ensuring collision
avoidance and formation is introduced in [27]. Authors in [28–30] propose a decen-
tralized receding horizon approach for discrete time multi-agent cooperative control.
However, in the aforementioned works, plant-model mismatch or uncertainties and/or
connectivity maintenance are not considered. In [31] ([32]), a centralized (decentral-
ized) linear MPC formulation and integer programming is proposed for dealing with
collision avoidance of multiple UAVs.

The contribution of this paper is to provide decentralized control protocols which
guarantee that a team of rigid-bodies modeled by 2nd order uncertain Lagrangian
dynamics satisfy: collision avoidance between agents; obstacle avoidance; connectivity
preservation; singularity avoidance; that agents remain in the workspace; while the
control inputs are saturated. This constitutes a general problem that arises in many
multi-agent applications where the agents need to perform a collaborative task, stay
close and connected to each other and navigate to desired goal points. To the best of
the authors’ knowledge, decentralized control protocols that guarantee all the afore-
mentioned control specifications for the dynamics in hand have not been proposed in
the bibliography. In order to address the aforementioned problem, we propose a De-
centralized Nonlinear Model Predictive Control (DNMPC) framework in which each
agent solves its own optimal control problem, having availability of information on
the current and estimated actions of all agents within its sensing range. The pro-
posed control scheme, under relatively standard Nonlinear Model Predictive Control
(NMPC) assumptions, guarantees that all the aforementioned control specifications
are satisfied. A conference version of this paper can be found in [33], in which a simi-
lar problem is investigated for nonlinear uncertain dynamics with additive disturbance
in Rn, without any rotation representations. However, due to space constraints, the
proofs have been omitted in the conference paper.

The remainder of this paper is structured as follows: In Section 2 the notation and
preliminaries background are given. Section 3 provides the system dynamics and the
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formal problem statement. Section 4 discusses the technical details of the solution and
Section 5 is devoted to simulation examples. Finally, conclusions and future work are
discussed in Section 6.

2. Notation and Preliminaries

The set of positive integers is denoted by N. The real n-coordinate space, n ∈ N, is
denoted by Rn; Rn≥0 and Rn>0 are the sets of real n-vectors with all elements nonnegative
and positive, respectively. Given a set S, we denote by |S| its cardinality. The notation
‖x‖ is used for the Euclidean norm of a vector x ∈ Rn and ‖A‖ = max{‖Ax‖ :
‖x‖ = 1} for the induced norm of a matrix A ∈ Rm×n. Given a real symmetric
matrix A, λmin(A) and λmax(A) denote the minimum and the maximum absolute
value of eigenvalues of A, respectively. Its minimum and maximum singular values are
denoted by σmin(A) and σmax(A) respectively; I n ∈ Rn×n and 0m×n ∈ Rm×n are the
unit matrix and the m× n matrix with all entries zeros, respectively. The set-valued
function B : R3 × R>0 ⇒ R3, given by B(c, r) = {x ∈ R3 : ‖x − c‖ ≤ r}, represents
the 3D sphere with center c ∈ R3 and radius r ∈ R>0. Furthermore, we denote by
φ, θ and ψ the Euler angles of a frame {F} with respect to an inertial frame {Fo}.
We also use the notation M = R3 × T 3 where: T = (−π, π) ×

(
−π

2 ,
π
2

)
× (π, π). For

the definitions of Class K, Class KL functions, Input-to-State Stability (ISS Stability),
ISS Lyapunov Function and positively invariant sets, which will be used thereafter in
this manuscript, we refer the reader to [34–36].

Definition 1. (Minkowski Addition) Given the sets S1, S2 ⊆ Rn, their Minkowski
addition is defined by: S1 ⊕ S2 = {s1 + s2 ∈ Rn : s1 ∈ S1, s2 ∈ S2}.

Definition 2. (Pontryagin Difference) Given the sets S1, S2 ⊆ Rn, their Pontryagin
difference is defined by: S1 	 S2 = {s1 ∈ Rn : s1 + s2 ∈ S1,∀ s2 ∈ S2}.

Property 1. Let the sets S1, S2, S3 ⊆ Rn. Then, it holds that: (S1	S2)⊕(S2	S3) =
(S1 ⊕ S2)	 (S3 ⊕ S3).

Proof. The proof can be found in Appendix A.

3. Problem Formulation

3.1. System Model

Consider a set V of N rigid bodies, V = {1, 2, . . . , N}, N ≥ 2, operating in a workspace
W ⊆ R3. A coordinate frame {Fi}, i ∈ V is attached to the center of mass of each body.
The workspace is assumed to be modeled as a bounded sphere B (p

W
, rW ) expressed

in an inertial frame {Fo}. We consider that over time t each agent i ∈ V occupies
the space of a sphere B (pi(t), ri), where pi : R≥0 → R3 is the position of the agent’s
center of mass, and ri < rW is the radius of the agent’s rigid body. We denote by
qi(t) : R≥0 → T 3, the Euler angles representing the agents’ orientation with respect to

the inertial frame {Fo}, with qi , [φi, θi, ψi]
>. By defining: xi(t) , [pi(t)

>, qi(t)
>]>,

xi(t) : R≥0 →M, vi(t) , [ṗi(t)
>, ωi(t)

>]>, vi(t) : R≥0 → R6, we model the motion
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of agent i under continuous second order Lagrangian dynamics as:

ẋi(t) = J (qi)vi(t), (1a)

v̇i(t) = M−1
i (xi) [−C i(xi, ẋi)vi(t)− gi(xi) + ui(t)] + w̃i(xi,vi, t), (1b)

where J : T 3 → R6×6 is a Jacobian matrix that maps the Euler angle rates to vi:

J (qi) =

[
I 3 0 3×3

0 3×3 J q(qi)

]
, J q(qi) =

1 sinφi tan θi cosφi tan θi
0 cosφi − sinφi

0
sinφi
cos θi

cosφi
cos θi

. Moreover, M i :

M→ R6×6 is the positive definite inertia matrix, C i :M×R6 → R6×6 is the Coriolis
matrix and gi :M→ R6 is the gravity vector. The continuous function w̃i :M×R6×
R≥0 → R6 is a term representing disturbances and modeling uncertainties. Finally,
ui : R≥0 → R6 is the control input vector representing the 6D generalized actuation
force acting on the agent. The aforementioned vectors as well as their derivatives
are derived with respect to the inertial frame Fo. The matrix J (qi) is singular when
cos θi = 0 ⇔ θi = ±π

2 . However, the proposed controller guarantees that J (qi) is
well-defined for every i ∈ V.

Let us define the vector zi(t) =
[
xi(t)

>,vi(t)
>]> : R≥0 →M×R6, i ∈ V. Then, by

defining the vector żi : R≥0 → R12, the dynamics (1a), (1b) can be written as:

żi(t) = fi(zi(t),ui(t)) + wi(zi(t), t), (2)

where w =
[
0 1×6, w̃

>
i

]>
and the functions fi :M× R6 × R6 → R12, i ∈ V are given

by: fi(zi(t),ui(t)) ,

[
Jvi(t)

−M−1
i [C ivi(t) + gi − ui(t)]

]
. It is assumed that there exist

finite constants w̄i, ūi ∈ R>0, i ∈ V such that:

Wi = {wi ∈ R12 : ‖wi‖ ≤ wi},Ui = {ui ∈ R6 : ‖ui‖ ≤ ui}, (3)

i.e., the disturbances wi as well as the control inputs ui are upper bounded by the
terms wi, ui, respectively.

Assumption 1. The nonlinear functions fi are locally Lipschitz continuous in M×
R6 × Ui with Lipschitz constants Lfi . Thus, it holds that:

‖fi(z,u)− fi(z′,u)‖ ≤ Lfi‖z− z′‖,∀z, z′ ∈M× R6,u ∈ Ui. (4)

We consider that in the given workspace there exists a set of L ∈ N static obstacles,
with L = {1, 2, . . . , L}, also modeled by the spheres B

(
p

O`
, rO`

)
, with centers at po-

sitions p
O`
∈ R3 and radii rO`

∈ R>0, where ` ∈ L. Their position and size in the 3D
space is assumed to be a priori unknown to each agent. In order for agents to be able
to detect the obstacles during their navigation, we assume that each agent i ∈ V has
a limited spatial obstacle-detection range bi such that bi > ri. Thus, each agent senses
points which reside on the surface of the obstacles and which are within a radius bi of
its position. Given these points, each agent reconstructs the sphere that corresponds
to the obstacle and extracts its position and radius in 3D space.

Assumption 2. (Measurements Assumption) Agent i ∈ V has: 1) access to mea-
surements pi,qi, ṗi,ωi, that is, vectors xi,vi pertaining to itself; 2) A limited sensing
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{Fo}

pi(τ)

di bi

ri{Fi}•

Agent i

pj(τ)

dj

rj •

Agent j

{Fj}

•

p
O`

Obstacle
rO`

Figure 1.: Illustration of two agents i, j ∈ V and a static obstacle ` ∈ L in the workspace at a time instant τ ;
{O} is the inertial frame, {Fi}, {Fj} are the frames attached to the agents’ center of mass, pi,pj ,p` ∈ R3 are
the positions of the centers of mass of agents i, j and obstacle ` respectively, expressed in frame {Fo}; ri, rj , r`
are the radii of the agents i, j and the obstacle ` respectively; di, dj with di > dj are the agents’ sensing ranges;
bi is the spatial obstacle-detection range of agent i.

range di such that: di > max
i,j∈V,i 6=j

{ri + rj}.

The latter implies that each agent has sufficiently large sensing radius so as to
measure the agent with the biggest volume, due to the fact that the agents’ radii
are not the same. The consequence of points 1 and 2 of Assumption 2 is that by
defining the set of agents j that are within the sensing range of agent i at time t as:
Ri(t) , {j ∈ V\{i} : ‖pi(t)−pj(t)‖ < di}, agent i knows all signals pj(t), qj(t), ṗj(t),
ωj(t), ∀j ∈ Ri(t), t ∈ R≥0, of all agents j ∈ Ri(t) by virtue of being able to calculate
them using knowledge of its own pi(t), qi(t), ṗi(t), ωi(t). The geometry of two agents
i and j as well as an obstacle ` in the workspace W is depicted in Figure 1.

Definition 3. (Collision/Singularity-free Configuration) The multi-agent system is in
a collision/singularity-free configuration at a time instant τ ∈ R≥0 if all the following
hold: 1) For every i, j ∈ V, i 6= j it holds that: ‖pi(τ)−pj(τ)‖ > ri + rj ; 2) For every
i ∈ V and for every ` ∈ L it holds that: ‖pi(τ)− p

O`
‖ > ri + rO`

; 3) For every i ∈ V it
holds that: ‖pi(τ)− p

W
‖ < rW − ri; 4) For every i ∈ V it holds that: −π

2 < θi(τ) < π
2 .

Definition 4. (Neighboring set) Define the neighboring set of agent i ∈ V as: Ni =
{j ∈ V\{i} : j ∈ Ri(0)}. We will refer to agents j ∈ Ni as the neighbors of agent i ∈ V.

The set Ni is composed of indices of agents j ∈ V which are within the sensing
range of agent i at time t = 0. Agents j ∈ Ni are agents which agent i is instructed to
keep within its sensing range at all times t ∈ R>0, and therefore maintain connectivity
with. While the sets Ni are introduced for connectivity maintenance specifications and
they are fixed, the sets Ri(t) are used to ensure collision avoidance, and, in general,
their composition evolves and varies through time.

Assumption 3. (Initial Conditions Assumption) For sake of cooperation needs, we
assume that Ni 6= ∅, ∀i ∈ V i.e., all agents have at least one neighbor. We also assume
that at time t = 0 it holds that vi(0) = 0 6×1 and the multi-agent system is in a
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collision/singularity-free configuration, as per Definition 3.

3.2. Objectives

Given the aforementioned modeling of the system, the objective of this paper is the
stabilization of the agents i ∈ V starting from a collision/singularity-free configuration
as given in Definition 3 to a desired feasible configuration xi,des = [p>i,des,q

>
i,des]

> ∈M,
while maintaining connectivity between neighboring agents, and avoiding collisions
between agents, obstacles, and the workspace boundary.

Definition 5. (Desired Feasible Configuration) The desired configuration xi,des =
[p>i,des,q

>
i,des]

> ∈ M of agents i ∈ V, j ∈ Ni is feasible if the following hold: 1) It

is a collision/singularity-free configuration according to Definition 3; 2) It does not
result in a violation of the connectivity maintenance between neighboring agents, i.e.,
‖pi,des − pj,des‖ < di, ∀i ∈ V, j ∈ Ni.

Definition 6. (Feasible Initial Conditions) Let xi,des =
[
p>i,des,q

>
i,des

]>
∈ M, i ∈ V

be a desired feasible configuration as defined in Definition 5. Then, the set of all
initial conditions xi(0), vi(0) according to Assumption 3, for which there exist time
constants ti ∈ R>0 ∪ {∞} and control inputs u?i ∈ Ui, i ∈ V, which define a solution
x?i (t), t ∈ [0, ti] of the system of differential equations (1a)-(1b), under the presence
of disturbance wi ∈ Wi, such that: 1) x?i (ti) = xi,des, 2) ‖p?i (t) − p?j (t)‖ > ri + rj for

every t ∈ [0, ti], i, j ∈ V, i 6= j, 3) ‖p?i (t) − p
O`
‖ > ri + rO`

for every t ∈ [0, ti], i ∈ V,

` ∈ L, 4) ‖p?i (t)−p
W
‖ < rW − ri for every t ∈ [0, ti], i ∈ V, 5) ‖p?i (t)−p?j (t)‖ < di for

every t ∈ [0, ti], i ∈ V, j ∈ Ni, are called feasible initial conditions.

The feasible initial conditions are, essentially, all the initial conditions xi(0), vi(0),
i ∈ V from which there exist controllers ui ∈ Ui that can navigate the agents to the
given desired states xi,des, under the presence of disturbances wi ∈ Wi, while i) the
initial neighbors remain connected, ii) the agents do not collide with each other, iii)
the agents stay in the workspace and iv) the agents do to collide with the obstacles of
the environment. Initial conditions for which one or more agents can not be driven to
the desired state xi,des by a controller ui ∈ Ui, i.e., initial conditions that violate one
or more of the conditions of Definition 6, are considered infeasible initial conditions.
Motivated by this observation, the goal of this paper is to provide a systematic method
of designing decentralized feedback controllers that navigate the agents to the desired
states xi,des from all feasible initial conditions, as defined in Definition 6.

3.3. Problem Statement

Formally, the control problem, under the aforementioned constraints, is formulated as
follows:

Problem 1. Consider N agents governed by dynamics (2), modeled by the spheres
B (pi, ri), i ∈ V, and operating in a spherical workspace W which is modeled by the
sphere B (p

W
, rW ). In the workspace there are L spherical obstacles B

(
p

O`
, rO`

)
, ` ∈ L.

The agents have communication capabilities according to Assumption 2, under the
initial conditions xi(0), vi(0) imposed by Assumption 3 and they are affected by dis-
turbances wi ∈ Wi. Then, given a desired feasible configuration xi,des according to
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Definition 5, for all feasible initial conditions, as defined in Definition 6, the problem
lies in designing decentralized feedback control laws ui ∈ Ui, such that for every i ∈ V
and for all times t ∈ R≥0, all the following specifications are satisfied: 1) Position
and orientation stabilization is achieved: limt→∞ ‖xi(t) − xi,des‖ → 0; 2) Inter-agent
collision is avoided: ‖pi(t) − pj(t)‖ > ri + rj , ∀j ∈ V, j 6= i; 3) Connectivity between
neighboring agents is preserved: ‖pi(t) − pj(t)‖ < di, ∀j ∈ Ni; 4) Agent-with-obstacle
collision is avoided: ‖pi(t) − p

O`
(t)‖ > ri + rO`

,∀` ∈ L; 5) Agent-with-workspace-
boundary collision is avoided: ‖pi(t)− p

W
‖ < rW − ri; 6) All matrices J (qi) are well

defined: −π
2 < θi(t) <

π
2 ;

4. Proposed Solution

In this section, a systematic solution to Problem 1 is introduced. Our overall approach
builds on designing a decentralized control law ui ∈ Ui, i ∈ V for each agent. In
particular, since we aim to minimize the norms ‖xi(t) − xi,des‖ as t → ∞, subject to
the state constraints imposed by Problem 1, it is reasonable to seek a solution which is
the outcome of an optimization problem. In Section 4.1 we derive the error dynamics
and in Section 4.2 we discuss the proposed control scheme as well as the stability
analysis.

4.1. Error Dynamics

Let us define the stack vector of the desired states and velocities by: zi,des =[
x>i,des,v

>
i,des

]>
∈ M × R6. The state xi,des ∈ M is the desired feasible state that

agent i needs to reach, as is given in Problem 1. For the desired velocities vi,des ∈ R6

we can set, without loss of generality, that vi,des = 0 6×1, i.e., the agents need to stop
when they achieve the desired state. We define the error vector ei : R≥0 → M× R6

by:

ei(t) =

[
xi(t)
vi(t)

]
−
[
xi,des

vi,des

]
= zi(t)− zi,des. (5)

If we provide a control scheme that guarantees that lim
t→∞
‖zi(t) − zi,des‖ → 0 then it

is also guaranteed that lim
t→∞
‖xi(t)− xi,des‖ → 0, which is the first goal of Problem 1.

By defining the vector ėi : R≥0 → R12, the error dynamics are given by:

ėi(t) = hi(ei(t),ui(t)), (6)

where the functions hi :M×R6×R6 → R12, gi :M×R6×R6 → R12 are defined by:

hi(ei(t),ui(t)) , gi(ei(t),ui(t)) + wi(ei(t) + zi,des, t), (7a)

gi(ei(t),ui(t)) , fi(ei(t) + zi,des,ui(t)), (7b)

respectively, where fi is defined in (2). We define the set Zi ⊆ M × R6, i ∈ V as
the set that captures all the state constraints on the system (1), posed by Problem 1.
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Therefore Zi is given by:

Zi ,
{

zi(t) ∈M× R6 : ‖pi(t)− pj(t)‖ ≥ ri + rj + ε,∀j ∈ Ri(t),

‖pi(t)− pj(t)‖ ≤ di − ε, ∀j ∈ Ni, ‖pi(t)− p
O`
‖ ≥ ri + rO`

+ ε, ∀` ∈ L,

‖pi(t)− p
W
‖ ≤ rW − ri − ε,−

π

2
+ ε ≤ θi(t) ≤

π

2
− ε
}
, i ∈ V,

where ε ∈ R>0 is an arbitrary small constant. In order to translate the constraints
that are dictated for the state zi into constraints regarding the error state ei of (5), we
define the set Ei =

{
ei ∈M× R6 : ei ∈ Zi ⊕ (−zi,des)

}
, ∀i ∈ V. Then, the following

rudimentary equivalence holds for all i ∈ V: zi ∈ Zi ⇔ ei ∈ Ei.

Property 2. The nonlinear functions gi, i ∈ V as defined in (7b), are locally Lipschitz
continuous in Ei × Ui, with Lipschitz constants Lgi = Lfi , where Lfi as in (4). Thus,

‖gi(e,u)− gi(e′,u)‖ ≤ Lgi‖e− e′‖, ∀e, e′ ∈ Ei,u ∈ Ui. (8)

Proof. The proof can be found in Appendix B.

The goal is to solve Problem 1, i.e, to design decentralized control laws ui ∈ Ui,
∀i ∈ V such that the error signal ei, with dynamics as in (6), constrained by ei ∈ Ei,
satisfies lim

t→∞
‖ei(t)‖ → 0, while all system signals remain bounded in their respective

regions as well.

4.2. Decentralized Control Design

Due to the fact that we have to deal with the minimization of norms ‖ei(t)‖, as
t→∞, subject to constraints ei ∈ Ei, we invoke here a class of decentralized Nonlinear
Model Predictive controllers (NMPC). NMPC frameworks have been studied in [37–45]
and they have been proven to be a powerful tool for dealing with state and input
constraints.

Consider a sequence of sampling times {tk}k∈N, with a constant sampling time h, 0 <
h < Tp, where Tp is the finite time predicted horizon, such that tk+1 = tk +h, ∀k ∈ N.
Hereafter we will denote by i the agent and by index k the sampling instant. In sampled
data NMPC, a Finite-Horizon Open-loop Optimal Control Problem (FHOCP) is solved
at discrete sampling time instants tk based on the current state error measurement
ei(tk). The solution is an optimal control signal u?i (s), computed over s ∈ [tk, tk +Tp].
The open-loop input signal applied in between the sampling instants is given by the
solution of the following FHOCP:

min
ui(·)

Ji(ei(tk),ui(·))

= min
ui(·)

{
Vi(ei(tk + Tp)) +

∫ tk+Tp

tk

[
Fi(ei(s),ui(s))

]
ds

}
(9a)

subject to:

ė(s) = gi(ei(s),ui(s)), ei(tk) = ei(tk), (9b)

ei(s) ∈ Ei,s−tk ,ui(s) ∈ Ui, s ∈ [tk, tk + Tp], (9c)

e(tk + Tp) ∈ Ωi. (9d)
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At a generic time tk then, agent i ∈ V solves the aforementioned FHOCP. The
notation · is used to distinguish predicted states which are internal to the con-
troller, corresponding to the nominal system (9b) (i.e., the system (6) by substituting
w = 0 12×1). This means that ei(·) is the solution to (9b) driven by the control input
ui(·) : [tk, tk + Tp] → Ui with initial condition ei(tk). Note that the predicted states
are not the same with the actual closed-loop values due to the fact that the system is
under the presence of disturbances wi ∈ Wi, where Wi is defined in (3). The functions
Fi : Ei×Ui → R≥0, Vi : Ei → R≥0 stand for the running costs and the terminal penalty
costs, respectively, and they are defined by:

Fi
(
ei,ui

)
, e>i Q iei + u>i Riui, (10a)

Vi
(
ei
)
, e>i P iei. (10b)

Ri ∈ R6×6 and Q i,P i ∈ R12×12 are symmetric and positive definite controller gain
matrices to be appropriately tuned. The sets Ei,s−tk , Ωi will be explained later. For
the running cost functions Fi, i ∈ V the following hold:

Lemma 1. Let the running costs Fi be defined by (10a). Then, for all ηi ∈ Ei × Ui,
there exist functions α1, α2 ∈ K∞ such that: α1

(
‖ηi‖

)
≤ Fi

(
ei,ui

)
≤ α2

(
‖ηi‖

)
, i ∈ V,

where ηi ,
[
e>i ,u

>
i

]>
.

Proof. The proof can be found in Appendix C.

Lemma 2. The running costs Fi are locally Lipschitz continuous in Ei × Ui. Thus,
it holds that:

∣∣Fi(ei,ui)− Fi(e′i,ui)∣∣ ≤ LFi
‖ei − e′i‖,∀ei, e′i ∈ Ei,u ∈ Ui, where: LFi

,
2σmax(Q i) sup

ei∈Ei
‖ei‖.

Proof. The proof can be found in Appendix D.

The applied input signal is a portion of the optimal solution to an optimization
problem where information on the states of the neighboring agents of agent i is taken
into account only in the constraints considered in the optimization problem. These
constraints pertain to the set of its neighbors Ni and, in total, to the set of all agents
within its sensing range Ri. Regarding these, we make the following assumption:

Assumption 4. (Access to Predicted Information from each agent) When at time tk
agent i solves a FHOCP, it has access to the following measurements, across the entire
horizon s ∈ (tk, tk + Tp]:

(1) Measurements of the states:
• zj(tk) of all agents j ∈ Ri(tk) within its sensing range at time tk;
• zj′(tk) of all of its neighboring agents j′ ∈ Ni at time tk;

(2) The predicted states:
• zj(s) of all agents j ∈ Ri(tk) within its sensing range;
• zj′(s) of all of its neighboring agents j′ ∈ Ni;

Remark 1. The justification for this assumption is as follows. By considering that
Ni ⊆ Ri(t), ∀t ∈ R≥0, that the state vectors zj are comprised of 12 real numbers
encoded by 4 bytes, and that the sampling occurs with a frequency f for all agents,
the overall downstream bandwidth required by each agent is: BWd = 12× 32 [bits]×
|Ri|×

Tp
h
×f [sec−1]. Given a conservative sampling time f = 100 Hz and a horizon of
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Agent i

Agent j

tk tk+1 tk+2

. . .

tk + Tp

Figure 2.: The inter-agent constraint regime for two agents, i, j. Fully outlined circles denote measured con-
figurations, while partly outlined circles denote predicted configurations. During the solution to the individual
optimization problems, the predicted configuration of each agent at each time step is constrained by the pre-
dicted configuration of the other agent at the same time step (hence the homologously identical colors at each
discrete time step).

Tp
h

= 100 time steps, the wireless protocol IEEE 802.11n-2009 (a standard for present-

day devices) can accommodate up to |Ri| =
600 [Mbit · sec−1]

12× 32[bit]× 104[sec−1]
≈ 16·102 agents,

within the range of one agent. We deem this number to be large enough for practical
applications for the approach of assuming access to the predicted states of agents
within the range of one agent to be reasonable.

In other words, each time an agent solves its own individual optimization problem,
it knows the (open-loop) state predictions that have been generated by the solution
of the optimization problem of all agents within its sensing range at that time, for the
next Tp time units. These pieces of information are required, as each agent’s trajectory
is constrained not by constant values, but by the trajectories of its associated agents
through time: at each solution time tk and within the next Tp time units, an agent’s
predicted configuration at time s ∈ [tk, tk+Tp] needs to be constrained by the predicted
configuration of its neighboring and perceivable agents (agents within its sensing range)
at the same time instant s, so that collisions are avoided, and connectivity between
neighboring agents is maintained. We assume that the above pieces of information are
always available, accurate and can be exchanged without delay. Figure 2 depicts the
designed inter-agent (and intra-horizon) constraint regime.

Remark 2. The designed procedure flow can be either concurrent or sequential, mean-
ing that agents can solve their individual FHOCPs and apply the control inputs either
simultaneously, or one after the other. The conceptual design itself is procedure-flow
agnostic, and hence it can incorporate both without loss of feasibility or successful sta-
bilization. The approach that we have adopted here is the sequential one: each agent
solves its own FHOCP and applies the corresponding admissible control input in a
round robin way, considering the current and planned (open-loop state predictions)
configurations of all agents within its sensing range. This choice is made on account
of three reasons: (a) Safety: if a parallel approach is adopted, at the limit, that is in
the event that the communication (maximum distance) range is comparable to the
size of the agents (consider for instance the case where two UAVs need to collabora-
tively transport a similar-sized object) it is more likely for collisions to occur. This
is because, within a parallel approach, agents would need to rely more on the open-
loop predictions of their neighboring agents, which, in the case of disturbances, would
make the violation of constraints more likely to occur. (b) Conversely, the sequential

10



Current
configuration

feasible?
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Agent 1:
solve FHOCP

and apply
control input
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and apply
control input

Agent N:
solve FHOCP

and apply
control input

Agent 1:
solve FHOCP

and apply
control input

Agent 2:
solve FHOCP

and apply
control input

Agent N:
solve FHOCP

and apply
control input

STEP 0 STEP 1 STEP 2

. . .

NO

YES

Figure 3.: The procedure is approached sequentially. Notice that the figure implies that recursive feasibility is
established if the initial configuration is itself feasible.

approach allows each agent, in turn, to have access to the direct measurements of all
other agents’ position and overall configuration, as well as their predicted trajectories,
before solving its own optimization problem, thereby allowing agents to plan their tra-
jectories and execute their motions using additional and concrete information on top of
the (in principle approximate) open-loop predictions, and therefore without danger of
violating their constraints. (c) Synchronization problems between agents are avoided
within a sequential approach, since, from the moment when agent i ∈ V starts to solve
its optimization problem to the moment that it concludes executing its motion, all
agents j ∈ V, j 6= i are assumed stationary, while the configuration of those within its
sensing range is known to i. Figure 3 and Figure 4 depict the sequential procedural
and informational regimes.

The solution to FHOCP (9a) - (9d) at time tk provides an optimal control input,
denoted by u?i (s; ei(tk)), s ∈ [tk, tk + Tp]. This control input is then applied to the
system until the next sampling instant tk+1:

ui(s; ei(tk)) = u?i
(
s; ei(tk)

)
, s ∈ [tk, tk+1). (11)

At time tk+1 a new finite horizon optimal control problem is solved in the same manner,
leading to a receding horizon approach.

The control input ui(·) is of feedback form, since it is recalculated at each sampling
instant based on the then-current state. The solution of (6) at time s, s ∈ [tk, tk +Tp],
starting at time tk, from an initial condition ei(tk) = ei(tk), by application of the
control input ui : [tk, s]→ Ui is denoted by: ei

(
s; ui(·), ei(tk)

)
, s ∈ [tk, tk + Tp].

The predicted state of the system (9b) at time s, s ∈ [tk, tk +Tp] based on the mea-
surement of the state at time tk, ei(tk), by application of the control input ui

(
s; ei(tk)

)
,

for the time period s ∈ [tk, tk + Tp] is denoted by: ei
(
s; ui(·), ei(tk)

)
, s ∈ [tk, tk + Tp].

Due to the fact that the system is in presence of disturbances wi ∈ Wi, as Wi

defined in (3), it holds in general that: ei(·) 6= ei(·).

Property 3. By integrating (6), (9b) at the time interval s ≥ τ , the actual ei(·) and

11



Agent m ∈ Ri(tk)

Agent n ∈ Ri(tk)

Latest predictions
(current timestep tk)

Agent i

Latest predictions
(previous timestep tk−1)

Agent p ∈ Ri(tk)

Agent q ∈ Ri(tk)

...

...

Figure 4.: The flow of information to agent i regarding his perception of agents within its sensing range Ri at
arbitrary FHOCP solution time tk. Agents m,n ∈ Ri(tk) have solved their FHOCP; agent i is next; agents
p, q ∈ Ri(tk) have not solved their FHOCP yet.

the predicted states ei(·) are respectively given by:

ei
(
s; ui(·), ei(τ)

)
= ei(τ) +

∫ s

τ
hi
(
ei(s

′; ei(τ)),ui(s)
)
ds′, (12a)

ei
(
s; ui(·), ei(τ)

)
= ei(τ) +

∫ s

τ
gi
(
ei(s

′; ei(τ)),ui(s
′)
)
ds′. (12b)

The satisfaction of the constraints Ei on the state along the prediction horizon
depends on the future realization of the uncertainties. Through the assumption of
additive uncertainty and Lipschitz continuity of the nominal model, it is possible to
compute a bound on the future effect of the uncertainty on the system. Then, by
considering this effect on the state constraint on the nominal prediction, it is possible
to guarantee that the evolution of the real state of the system will be admissible for
all times. In view of the latter, the state constraint set Ei of the standard NMPC for-
mulation, is being replaced by a restricted constraint set Es−tk ⊆ Ei in (9c). This state
constraints’ tightening for the nominal system (9b) with additive disturbance wi ∈ Wi

is a key ingredient of the proposed controller and guarantees that the evolution of the
evolution of the real system will be admissible for all times. If the state constraint set
was left unchanged during the solution of the optimization problem, the applied input
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Ei

Ei 	Xi,tk+1−tk

Ei 	Xi,Tp

. . .

. . .

Figure 5.: The nominal constraint set Ei in bold, and the consecutive restricted constraint sets Ei 	 Xi,s−tk ,
s ∈ [tk, tk + Tp], dashed. The predicted state is constrained by a different and more tight set at each different
time instant, since the more times goes by the more uncertain the true state becomes, and hence, the more the
model state needs to be restricted if the true state is to be constrained within Ei at all times.

to the plant, coupled with the uncertainty affecting the states of the plant could force
the states of the plant to escape their intended bounds. The aforementioned tightening
set strategy is inspired by the works [46–48].

Lemma 3. The difference between the actual measurement ei
(
tk + s; ui(·), ei(tk)

)
at

time tk + s, s ∈ (0, Tp], and the predicted state ei
(
tk + s; ui(·), ei(tk)

)
at the same

time, under a control input ui(·) ∈ Ui, starting at the same initial state ei(tk) is

upper bounded by:
∥∥ei(tk + s; ui(·), ei(tk)

)
− ei

(
tk + s; ui(·), ei(tk)

)∥∥ ≤ wi
Lgi

(eLgi
s−1),

s ∈ (0, Tp], where wi is the upper bound of the disturbance as defined in (3), and Lgi
is defined in (8).

Proof. The proof can be found in Appendix E.

By taking into consideration the aforementioned Lemma, the restricted constraints set
are then defined by: Ei,s−tk , Ei 	Xi,s−tk , where:

Xi,s−tk =

{
ei ∈M× R6 : ‖ei(s)‖ ≤

wi
Lgi

(
eLgi

(s−tk) − 1
)
, ∀s ∈ [tk, tk + Tp]

}
. (13)

If the state constraint set considered in the solution of the FHOCP is given by:
Ei,s−tk , then the state of the real system ei is guaranteed to fulfill the original state
constraint sets Ei. We formalize this statement in Property 4.

Property 4. For every s ∈ [tk, tk + Tp], it holds that if: ei
(
s; ui(·, ei(tk)), ei(tk)

)
∈

Ei	Xi,s−tk , where Xi,s−tk is given by (13), then the real state ei satisfies the constraints
Ei, i.e., ei(s) ∈ Ei.

Proof. The proof can be found in Appendix F.

Assumption 5. The terminal set Ωi is a subset of an admissible and positively invari-
ant set Ψi, with Ωi ⊆ Ψi, where Ψi is defined by: Ψi ,

{
ei ∈ Φi : Vi(ei) ≤ εΨi

}
, εΨi

>
0.
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Assumption 6. The set Ψi is interior to the set Φi, Ψi ⊆ Φi, which is the set of
states within Ei,Tp−h for which there exists an admissible control input (see Definition
7) which is of linear feedback form with respect to the state κi(ei) : [0, h] → Ui:
Φi ,

{
ei ∈ Ei,Tp−h : κi(ei) ∈ Ui

}
, such that for all ei ∈ Ψi and for all s ∈ [0, h] it holds

that:

∂Vi
∂ei

gi
(
ei(s), κi(ei(s))

)
+ Fi

(
ei(s), κi(ei(s))

)
≤ 0. (14)

Remark 3. The existence of the robust linear state-feedback control law κi is en-
sured if: 1) the linearization of system (6) is stabilizable; 2) the function hi is twice
differentiable, locally Lipschitz continuous in Ei × Ui with f(0,0) = 0, and 3) Ui is a
compact subset of R6 containing the origin in its interior [49,50].

Assumption 7. The admissible and positively invariant set Ψi is such that ∀ei(t) ∈
Ψi ⇒ ei

(
t+ s; κi(ei(t)), ei(t)

)
∈ Ωi ⊆ Ψi, for some s ∈ [0, h].

The terminal sets Ωi are chosen to be closed, including the origin, as: Ωi ,
{
ei ∈ Ei :

Vi(ei) ≤ εΩi

}
, where εΩi

∈ (0, εΨi
).

Remark 4. It should be noted that the larger the length of the time-horizon Tp the
more probable (in general) it becomes that the sets Ei,s may become empty beyond
some s ∈ [tk, tk +Tp]. The length of the time-horizon should hence be designed so that
the above violation does not occur.

For the terminal cost penalty functions Vi, i ∈ V the following hold:

Lemma 4. Let the functions Vi be defined by (10b). Then, for every ei ∈ Ψi there
exist functions α1, α2 ∈ K∞ such that: α1

(
‖ei‖

)
≤ Vi(ei) ≤ α2

(
‖ei‖

)
, ∀i ∈ V.

Proof. The proof can be found in Appendix G.

Lemma 5. The terminal penalty functions Vi are locally Lipschitz continuous in
Ψi. Thus it holds that:

∣∣Vi(ei) − Vi(e
′
i)
∣∣ ≤ LVi

‖ei − e′i‖, ∀ei, e′i ∈ Ψi, where:
LVi

= 2σmax(P i) sup
ei∈Ψi

‖ei‖.

Proof. The proof is similar to the proof of Lemma 2 and is omitted.

We can now give the definition of an admissible input for the FHOCP (9a)-(9d).

Definition 7. (Admissible input for FHOCP (9a)-(9d)) A control input ui : [tk, tk +
Tp]→ R6 for a state ei(tk) is called admissible for the problem (9a)-(9d) if the following
hold: 1) ui(·) is piecewise continuous; 2) ui(s) ∈ Ui, ∀s ∈ [tk, tk + Tp]; 3) ei

(
tk +

s; ui(·), ei(tk)
)
∈ Ei 	Xi,s, ∀s ∈ [0, Tp]; 4) ei

(
tk + Tp; ui(·), ei(tk)

)
∈ Ωi;

In other words, ui is admissible if it conforms to the constraints on the input and its
application yields states that conform to the prescribed state constraints of FHOCP
(9a)-(9d) along the entire horizon [tk, tk + Tp], and the terminal predicted state con-
forms to the terminal constraint.

Under these considerations, we can now state the theorem that relates to the guar-
anteeing of the stability of the compound system of agents i ∈ V, when each of them
is assigned a desired position and orientation:
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Ei 	XTp−h
ΦiΨiΩi

Figure 6.: The hierarchy of sets Ωi ⊆ Ψi ⊆ Φi ⊆ Ei,Tp−h, in bold, dash-dotted, dash-dotted, and dashed,
respectively. For every state in Φi there is a linear state feedback control κi(ei) which, when applied to a state
ei ∈ Ψi, forces the trajectory of the state of the system to reach the terminal set Ωi.

Theorem 1. Suppose that for every i ∈ V:

(1) Assumptions 1-7 hold;
(2) A solution to FHOCP (9a)-(9d) is feasible at time t = 0 with feasible initial

conditions, as defined in Definition 6;
(3) The upper bound wi of the disturbance wi satisfies the following:

wi ≤
εΨi
− εΩi

LVi

Lgi
(eLgi

h − 1)eLgi
(Tp−h)

, (15)

for all t ∈ R≥0.

Then the closed loop trajectories of the system (6), under the control input (11) which
is the outcome of the FHOCP (9a)-(9d), converge to the set Ωi, as t → ∞ and are
ultimately bounded there, for every i ∈ V.

Proof. The proof of the above theorem consists of two parts: in the first, recursive
feasibility is established, that is, initial feasibility is shown to imply subsequent feasi-
bility; in the second, and based on the first part, it is shown that the error state ei(t)
reaches the terminal set Ωi and is trapped there. The feasibility analysis can be found
in Appendix H. The convergence analysis can be found in Appendix I.

Remark 5. Inequality (15) gives an upper bound of the disturbance that the proposed
methodology can handle. Disturbances excheeding this bound cannot guarantee the
feasibility of Theorem 1.

Remark 6. Due to the existence of disturbances, the position and orientation er-
ror of each agent cannot be made to become arbitrarily close to zero, and therefore
lim
t→∞
‖ei(t)‖ cannot converge to zero. However, if the conditions of Theorem 2 hold, then

this error can be bounded above by the quantity
√
εΩi

/λmax(P i) (since the trajectory
of the error is trapped in the terminal set, this means that V (ei) = e>i P iei ≤ εΩi

).

Remark 7. In sampled-data Model Predictive Control, the solution to the optimiza-
tion problem is the input that is implemented on the continuous time system (6).
However, the solution of the FHOCP (9c)-(9d) is computed in a discrete-time man-
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ner. In order to address this, the input is held constant over the time period between
successive solutions of the optimization problem using zero-order hold. For more de-
tails we refer the reader to [43]. Implementation tools of this approach, which we also
have adopted for our simulation experiments (see next section), can be found in [45].

5. Simulation Results

For a simulation scenario, consider N = 3 unicycle agents with dynamics: żi(t) =ẋi(t)ẏi(t)

θ̇i(t)

 =

vi(t) cos θi(t)
vi(t) sin θi(t)

ωi(t)

 + wi(t)

1
1
1

, i ∈ V = {1, 2, 3}, where: zi = [xi, yi, θi]
>,

fi(zi,ui) = [vi cos θi, vi sin θi, ωi]
>, ui = [vi, ωi]

>, wi = wi sin(2t), with wi = 0.1. For
the control inputs we set ui = 8

√
2. The radius of the agents is ri = 0.5. The sensing

range of all agents is di = 4ri = 2.0. Their obstacle-detection range is set to bi = 4.0.
We set ε = 0.01, where ε is the parameter of the constraint set Zi. The neighboring
sets are set to N1 = {2, 3}, N2 = N3 = {1}. Agent 3 is chosen to execute motions first,
then agent 1, followed by agent 2. The agents’ initial positions are z1 = [−6, 3.5, 0]>,
z2 = [−6, 2.3, 0]> and z3 = [−6, 4.7, 0]>. Their desired configurations in steady-state
are z1,des = [6, 3.5, 0]>, z2,des = [6, 2.3, 0]> and z3,des = [6, 4.7, 0]>. In the workspace,
we place 2 obstacles with centers at points [0, 2.0]> and [0, 5.5]>, respectively. The
obstacles’ radii are rO`

= 1.0, ` ∈ L = {1, 2}. The matrices Q i, Ri, P i are set to
Q i = 0.5(I3 + 0.5†3), Ri = 0.005[5 0; 0 1] and P i = 0.3(I3 + 0.5†3), where †N is a
N×N matrix whose elements are randomly chosen between the values 0.0 and 1.0. The
maximum eigenvalue of matrix P i was found to be λmax(P i) = 0.4710. The sampling
time is h = 0.1 sec, the time-horizon is Tp = 0.6 sec, and the total execution time
given is 10 sec. Furthermore, we set: Lfi = 8.5883, LVi

= 0.0471, εΨi
= 0.0582 and

εΩi
= 0.0035 for all i ∈ V.

The frames of the evolution of the trajectories of the three agents in the x − y
plane are depicted in Figure 7; Figure 8 depicts the evolution of the error states’ 2−
norms of the agents; Figure 9 depicts the evolution of the error states’ 2− norms of the
agents in greater detail; Figure 10 shows the evolution of the distances between the
neighboring agents; Figure 11 and Figure 12 depict the distance between the agents
and the obstacle 1 and 2, respectively; Figure 13 shows the input signals directing the
agents through time; Figure 14 shows the evolution of the P-norms of the errors of
the three agents through time (i.e, ei(t)P iei(t), i ∈ {1, 2, 3}), and Figure 15 shows the
evolution of the P-norms of the errors of the three agents through time in more detail,
and for an extended execution time of t = 100 seconds, without altering the rest of the
simulation variables. Notably, the trajectories of the three agents are trapped inside the
terminal set once they enter it, since the magnitudes of their P-weighted error norms
do not exceed the value of εΩi

once they fall below it. Furthermore, it can be observed
that all agents reach their desired goal by satisfying all the constraints imposed by
Problem 1. The simulation was performed in MATLAB R2015a Environment utilizing
the NMPC optimization routine provided in [45]. The simulation takes 1340 sec on a
desktop with 8 cores, 3.60GHz CPU and 16GB of RAM.
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Figure 7.: The trajectories of the three agents in the x− y plane. Agent 1 is in red, agent 2 in blue and agent 3
in green. Agent 3 executes its motions first, followed by agent 1 and then agent 2. A faint black line connects
agents deemed neighbors. A point on the circumference of the obstacles is black and dotted when it is not
visible by an agent; otherwise it is colored in accordance with which agent it is visible. Mark X marks the
desired configurations.
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Figure 8.: The evolution of the 2−norms of the error signals of the three agents over time.

6. Conclusions

This paper addresses the problem of stabilizing a multiple rigid-bodies system under
constraints relating to the maintenance of connectivity between agents, the aversion
of collision among agents and between agents and stationary obstacles within their
working environment, and constraints regarding their states and control inputs. The
proposed framework is a Decentralized Nonlinear Model Predictive Control scheme.
Simulation results verify the controller efficiency of the proposed framework. Future
efforts will be devoted to reduce the communication burden between the agents by
introducing event-triggered communication controllers.
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[50] R. Findeisen, L. Imsland, F. Allgöwer, and B. Foss. State and Output Feedback
Nonlinear Model Predictive Control: An Overview. European Journal of Contro
(EJC), 9(2):190–206, 2003.

[51] I. Kolmanovsky and E. Gilbert. Theory and Computation of Disturbance Invari-
ant Sets for Discrete-Time Linear Systems. Mathematical Problems in Engineer-
ing, 4(4):317–367, 1998.

[52] R. Schneider. Minkowski Addition. Encyclopedia of Mathematics and its Appli-
cations. Cambridge University Press, 2013.

Appendix A. Proof of Property 1

Consider the vectors u, v, w, x ∈ Rn. According to Definition 2, we have that:
S1	S2 = {u ∈ Rn : u+v ∈ S1,∀ v ∈ S2}, S2	S3 = {w ∈ Rn : w+x ∈ S2,∀ x ∈ S3}.
Then, by adding the aforementioned sets according to Definition 1 we get:

(S1 	 S2)⊕ (S2 	 S3)

= {u + w ∈ Rn : u + v ∈ S1 and w + x ∈ S2, ∀ v ∈ S2,∀ x ∈ S3}
= {u + w ∈ Rn : u + v + w + x ∈ (S1 ⊕ S2),∀ v + x ∈ (S2 ⊕ S3)}. (A1)

By setting s1 = u + w ∈ Rn, s2 = v + x ∈ Rn and employing Definition 2, (A1)
becomes: (S1 	 S2) ⊕ (S2 	 S3) = {s1 ∈ Rn : s1 + s2 ∈ (S1 ⊕ S2), ∀ s2 ∈ (S2 ⊕ S3)}
= (S1 ⊕ S2)	 (S2 ⊕ S3), which concludes the proof.

Appendix B. Proof of Property 2

By setting z = e + zdes, z′ = e′ + zdes in (4) we get: ‖fi(e + zdes,u)− fi(e′ + zdes,u)‖
≤ Lfi‖e + zdes − e′ − zdes‖. By using (7b), the latter becomes: ‖gi(e,u) − gi(e′,u)‖
≤ Lgi‖e− e′‖, where Lgi = Lfi , which leads to the conclusion of the proof.

Appendix C. Proof of Lemma 1

By invoking the fact that:

λmin(P)‖y‖2 ≤ y>Py ≤ λmax(P)‖y‖2, ∀y ∈ Rn,P ∈ Rn×n,P = P> > 0, (C1)

we have: e>i Q iei + u>i Riui ≤ max{λmax(Q i), λmax(Ri)}‖ηi‖2, and: e>i Q iei +

u>i Riui ≥ min{λmin(Q i), λmin(Ri)}‖ηi‖2, where ηi =
[
e>i ,u

>
i

]>
and i ∈ V. By defin-

ing the K∞ functions α1, α2 : R≥0 → R≥0: α1(y) , min{λmin(Q i), λmin(Ri)}‖y‖2,
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α2(y) , max{λmax(Q i), λmax(Ri)}‖y‖2, we get α1

(
‖ηi‖

)
≤ Fi

(
ei,ui

)
≤ α2

(
‖ηi‖

)
.

Appendix D. Proof of Lemma 2

For every ei, e
′
i ∈ Ei, and ui ∈ Ui it holds that:∣∣Fi(ei,ui)− Fi(e′i,ui)∣∣ =

∣∣e>i Q iei + u>i Riui − (e′i)
>Q ie

′
i − u>i Riui

∣∣
≤
∣∣e>i Q i(ei − e′i)

∣∣+
∣∣(e′i)>Q i(ei − e′i)

∣∣. (D1)

By employing the property that: |e>i Q ie
′
i| ≤ ‖ei‖‖Q ie

′
i‖ ≤ ‖Q i‖‖ei‖‖e′i‖ ≤

σmax(Q i)‖ei‖‖e′i‖, (D1) is written as:
∣∣Fi(ei,ui)−Fi(e′i,ui)∣∣ ≤ σmax(Q i)‖ei‖‖ei−e′i‖

+σmax(Q i)‖e′i‖‖ei − e′i‖ ≤
[
2σmax(Q i) sup

ei∈Ei
‖ei‖

]
‖ei − e′i‖ = LFi

‖ei − e′i‖.

Appendix E. Proof of Lemma 3

By employing Property 3 and substituting τ ≡ tk and s ≡ tk + s
in (12a), (12b) yields: ei

(
tk + s; ui

(
·; ei(tk)

)
, ei(tk)

)
= ei(tk)

+
∫ tk+s
tk

gi
(
ei(s

′; ei(tk)),ui(s
′)
)
ds′+

∫ tk+s
tk

wi(·, s′)ds′, ei
(
tk+s; ui

(
·; ei(tk)

)
, ei(tk)

)
=

ei(tk) +
∫ tk+s
tk

gi
(
ei(s

′; ei(tk)),ui(s
′)
)
ds′, respectively. Subtracting the latter from

the former and taking norms on both sides yields:

∥∥∥∥ei(tk + s; ui
(
·; ei(tk)

)
,

ei(tk)
)
−ei

(
tk + s; ui

(
·; ei(tk)

)
, ei(tk)

)∥∥∥∥ =

∥∥∥∥ ∫ tk+s
tk

gi
(
ei(s

′; ei(tk)),ui(s
′)
)
ds′

−
∫ tk+s
tk

gi
(
ei(s

′; ei(tk)), ui(s
′)
)
ds′ +

∫ tk+s
tk

wi(·, s′)ds′
∥∥∥∥ ≤ Lgi ∫ tk+s

tk

∥∥∥∥ei(s; ui
(
·; ei(t)

)
,

ei(t)
)
−ei

(
s; ui

(
·; ei(t)

)
, ei(t)

)∥∥∥∥ds +swi, since, according to Property 2, gi is lo-

cally Lipschitz continuous in Ei × Ui with Lipschitz constant Lgi . Then, we

get:

∥∥∥∥ei(tk + s; ui
(
·; ei(tk)

)
, ei(tk)

)
−ei

(
tk + s; ui

(
·; ei(tk)

)
, ei(tk)

)∥∥∥∥ ≤ swi

+Lgi
∫ s

0

∥∥∥∥ei(tk + s′; ui
(
·; ei(tk)

)
, ei(tk)

)
−ei

(
tk + s′; ui

(
·; ei(tk)

)
, ei(tk)

)∥∥∥∥ds′.
By applying the Grönwall-Bellman inequality (see [34, Appendix A]) we get:∥∥∥∥ei(tk + s; ui

(
·; ei(tk)

)
, ei(tk)

)
−ei

(
tk + s; ui

(
·; ei(tk)

)
, ei(tk)

)∥∥∥∥ ≤ wi
Lgi

(eLgi
s−1).

Appendix F. Proof of Property 4

Let us define the function ζi : R≥0 → M × R6 as: ζi(s) , ei(s) −
ei(s; ui(s; ei(tk)), ei(tk)), for s ∈ [tk, tk + Tp]. According to Lemma 3 we have that:

‖ζi(s)‖ = ‖ei(s)−ei
(
s; ui(s; ei(t)), ei(t)

)
‖ ≤ wi

Lgi
(eLgi

(s−t)−1), s ∈ [tk, tk+Tp], which

means that ζi(s) ∈ Xi,s−t. Now we have that: ei
(
s; ui(·, ei(tk)), ei(tk)

)
∈ Ei	Xi,s−tk .

Then, it holds that: ζi(s) +ei
(
s; ui(s; ei(tk)), ei(tk)

)
∈
(
Ei 	 Xi,s−tk

)
⊕ Xi,s−tk ,
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or: ei(s) ∈
(
Ei 	 Xi,s−tk

)
⊕Xi,s−tk . Theorem 2.1 (ii) from [51] states that for every

U, V ⊆ Rn it holds that: (U 	 V ) ⊕ V ⊆ U . By invoking the latter result we get:
ei(s) ∈

(
Ei 	Xi,s−tk

)
⊕Xi,s−tk ⊆ Ei ⇒ ei(s) ∈ Ei, s ∈ [tk, tk + Tp].

Appendix G. Proof of Lemma 4

By invoking (C1) we get: λmin(P i)‖ei‖2 ≤ e>i P iei ≤ λmax(P i)‖ei‖2, ∀ei ∈ Ψi, i ∈ V.

By defining the K∞ functions α1, α2 : R≥0 → R≥0: α1(y) , λmin(P i)‖y‖2, α2(y) ,
λmax(P i)‖y‖2, we get: α1

(
‖ei‖

)
≤ Vi(ei) ≤ α2

(
‖ei‖

)
, ∀ei ∈ Ψi, i ∈ V.

Appendix H. Feasibility Analysis

In this section we will show that there can be constructed an admissible but not
necessarily optimal control input according to Definition 7.

Consider a sampling instant tk for which a solution u?i
(
·; ei(tk)

)
to Problem 1 exists.

Suppose now a time instant tk+1 such that tk < tk+1 < tk + Tp, and consider that the
optimal control signal calculated at tk is comprised by the following two portions:

u?i
(
·; ei(tk)

)
=

{
u?i
(
τ1; ei(tk)

)
, τ1 ∈ [tk, tk+1],

u?i
(
τ2; ei(tk)

)
, τ2 ∈ [tk+1, tk + Tp].

(H1)

Both portions are admissible since the calculated optimal control input is admissible,
and hence they both conform to the input constraints. As for the resulting predicted
states, they satisfy the state constraints, and, crucially:

ei
(
tk + Tp; u?i (·), ei(tk)

)
∈ Ωi. (H2)

Furthermore, according to condition (3) of Theorem 1, there exists an admissible (and
certainly not guaranteed optimal feedback control) input κi ∈ Ui that renders Ψi (and
consequently Ωi) invariant over [tk + Tp, tk+1 + Tp].

Given the above facts, we can construct an admissible input ũi(·) for time tk+1 by
sewing together the second portion of (H1) and the admissible input κi(·):

ũi(τ) =

{
u?i
(
τ ; ei(tk)

)
, τ ∈ [tk+1, tk + Tp],

κi
(
ei
(
τ ; u?i (·), ei(tk+1)

))
, τ ∈ (tk + Tp, tk+1 + Tp].

(H3)

Applied at time tk+1, ũi(τ) is an admissible control input with respect to the input
constraints as a composition of admissible control inputs, for all τ ∈ [tk+1, tk+1 + Tp].
What remains to prove is the following two statements:

Statement 1 : ei
(
tk+1 + s; u?i (·), ei(tk+1)

)
∈ Ei, ∀s ∈ [0, Tp].

Statement 2 : ei
(
tk+1 + Tp; ũi(·), ei(tk+1)

)
∈ Ωi.

Proof of Statement 1 : Initially we have that: ei
(
tk+1 +s; ũi(·), ei(tk+1)

)
∈ Ei	Xs,

for all s ∈ [0, Tp]. By applying Lemma 3 for t = tk+1 + s and τ = tk we get

∥∥∥∥ei(tk+1 +
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s; u?i (·), ei(tk)
)
− ei

(
tk+1 + s; u?i (·), ei(tk)

)∥∥∥∥ ≤ wi
Lgi

(
eLgi

(h+s) − 1
)
, or equivalently:

ei
(
tk+1 +s; u?i (·), ei(tk)

)
−ei

(
tk+1 +s; u?i (·), ei(tk)

)
∈ Xi,h+s. By applying a reasoning

identical to the proof of Lemma 3 for t = tk+1 (in the model equation) and t = tk (in

the real model equation), and τ = s we get:

∥∥∥∥ei(tk+1 + s; u?i (·), ei(tk)
)
−ei

(
tk+1 +

s; u?i (·), ei(tk+1)
)∥∥∥∥ ≤ wi

Lgi

(
eLgi

s − 1
)
, which translates to: ei

(
tk+1 + s; u?i (·), ei(tk)

)
−ei

(
tk+1 + s; u?i (·), ei(tk+1)

)
∈ Xi,s.

Furthermore, we know that the solution to the optimization problem is feasible at
time tk, which means that: ei

(
tk+1 + s; u?i (·), ei(tk)

)
∈ Ei 	Xi,h+s. Let us for sake of

readability set: ei,0 = ei
(
tk+1 + s; u?i (·), ei(tk)

)
, ei,0 = ei

(
tk+1 + s; u?i (·), ei(tk)

)
, ei,1

= ei
(
tk+1 + s; u?i (·), ei(tk+1)

)
, and translate the above system of inclusion relations:

ei,0 − ei,0 ∈ Xi,h+s, ei,0 − ei,1 ∈ Xi,s, ei,0 ∈ Ei 	Xi,h+s.
First we will focus on the first two relations, and we will derive a result that will

combine with the third statement so as to prove that the predicted state will be
feasible from tk+1 to tk+1 +Tp. Subtracting the second from the first yields ei,1−ei,0 ∈
Xi,h+s	Xi,s. Now we use the third relation ei,0 ∈ Ei	Xi,h+s, along with: ei,1− ei,0 ∈
Xi,h+s	Xi,s. Adding the latter to the former yields: ei,1 ∈

(
Ei	Xi,h+s

)
⊕
(
Xi,h+s	Xi,s

)
.

By using Property 1 we get: ei,1 ∈
(
Ei ⊕ Xi,h+s

)
	
(
Xi,h+s ⊕ Xi,s

)
. Using implication

1 (v) of Theorem 2.1 from [51] yields: ei,1 ∈
((
Ei ⊕ Xi,h+s

)
	 Xi,h+s

)
	 Xi,s. Using

implication 2 (3.1.11) from [52] yields ei,1 ∈ Ei 	Xi,s, or equivalently:

ei
(
tk+1 + s; u?i (·), ei(tk+1)

)
∈ Ei 	Xi,s, ∀s ∈ [0, Tp]. (H4)

By consulting with Property 4, this means that the state of the “true” system does
not violate the constraints Ei over the horizon [tk+1, tk+1 + Tp]: ei

(
tk+1 +s; u?i (·),

ei(tk+1)
)
∈ Ei 	Xi,s ⇒ ei

(
tk+1 + s; u?i (·), ei(tk+1)

)
∈ Ei, ∀s ∈ [0, Tp].

Proof of Statement 3: To prove this statement we begin with:

Vi
(
ei
(
tk + Tp; u?i (·), ei(tk+1)

))
− Vi

(
ei
(
tk + Tp; u?i (·), ei(tk)

)
≤ LVi

∥∥∥∥ei(tk + Tp; u?i (·), ei(tk+1)
)
− ei

(
tk + Tp; u?i (·), ei(tk)

)∥∥∥. (H5)

Consulting with Remark 3 we get that the two terms inside the norm are respectively

equal to: ei
(
tk + Tp; u?i (·), ei(tk+1)

)
= ei(tk+1) +

∫ tk+Tp

tk+1
gi
(
ei(s; ei(tk+1)),u?i (s)

)
ds,

and ei
(
tk+Tp; u?i (·), ei(tk)

)
= ei(tk+1) +

∫ tk+Tp

tk+1
gi
(
ei(s; ei(tk)),u

?
i (s)

)
ds. Subtracting

the latter from the former and taking norms on both sides we get:

∥∥∥∥ei(tk + Tp; u?i (·),

ei(tk+1)
)
−ei

(
tk+Tp; u?i (·), ei(tk)

)∥∥∥∥≤ ∥∥∥∥ei(tk+1)−ei(tk+1)

∥∥∥∥+Lgi
∫ Tp

h

∥∥∥∥ei(tk+s; u?i (·),

ei(tk+1)
)
−ei

(
tk + s; u?i (·), ei(tk)

)∥∥∥∥ds. By applying the Grönwall-Bellman inequal-

ity we obtain:

∥∥∥∥ei(tk + Tp; u?i (·), ei(tk+1)
)
−ei

(
tk + Tp; u?i (·), ei(tk)

)∥∥∥∥ ≤ ∥∥∥∥ei(tk+1)

1A = B1 ⊕B2 ⇒ A	B = (A	B1)	B2
2(A⊕B)	B ⊆ A
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−ei(tk+1)

∥∥∥∥eLgi
(Tp−h). By applying Lemma 3 for t = tk and τ = h we have:∥∥∥∥ei(tk + Tp; u?i (·), ei(tk+1)

)
−ei

(
tk + Tp; u?i (·), ei(tk)

)∥∥∥∥ ≤ wi
Lgi

(eLgi
h − 1)eLgi

(Tp−h).

Hence (H5) becomes:

Vi
(
ei
(
tk + Tp; u?i (·), ei(tk+1)

))
− Vi

(
ei
(
tk + Tp; u?i (·), ei(tk)

)
= LVi

wi
Lgi

(eLgi
h − 1)eLgi

(Tp−h). (H6)

Since the solution to the optimization problem is assumed to be feasible at
time tk, all states fulfill their respective constraints, and in particular, from (H2),
the predicted state ei

(
tk + Tp; u?i (·), ei(tk)

)
∈ Ωi. This means that Vi

(
ei
(
tk +

Tp; u?i (·), ei(tk)
)
≤ εΩi

. Hence (H6) becomes: Vi
(
ei
(
tk + Tp; u?i (·), ei(tk+1)

))
≤ εΩi

+LVi

wi
Lgi

(eLgi
h − 1)eLgi

(Tp−h). From Assumption 4 of Theorem 1, the upper bound

of the disturbance is in turn bounded by: wi ≤
εΨi
− εΩi

LVi

Lgi
(eLgi

h − 1)eLgi
(Tp−h)

. Therefore:

Vi
(
ei
(
tk + Tp; u?i (·), ei(tk+1)

))
≤ εΨi

, or, expressing the above in terms of tk+1 in-

stead of tk: Vi
(
ei
(
tk+1 + Tp − h; u?i (·), ei(tk+1)

))
≤ εΨi

. This means that the state

ei
(
tk+1 + Tp − h; u?i (·), ei(tk+1)

)
∈ Ψi. From Assumption 7, and since Ψi ⊆ Φi,

there is an admissible control signal κi
(
ei
(
tk+1 + Tp − h; u?i (·), ei(tk+1)

))
such that:

ei
(
tk+1 + Tp; κi(·), ei

(
tk+1 + Tp − h; u?i (·), ei(tk+1)

))
∈ Ωi. Hence, overall, it holds

that:

ei
(
tk+1 + Tp; ũi(·), ei(tk+1)

)
∈ Ωi. (H7)

Piecing the admissibility of ũi(·) from (H3) together with conclusions (H4) and
(H7), we conclude that the application of the control input ũi(·) at time tk+1 results
in that the states of the real system fulfill their intended constraints during the entire
horizon [tk+1, tk+1 + Tp]. Therefore, overall, the (sub-optimal) control input ũi(·) is
admissible at time tk+1 according to Definition 7, which means that feasibility of a
solution to the optimization problem at time tk implies feasibility at time tk+1 > tk.
Thus, since at time t = 0 a solution is assumed to be feasible, a solution to the optimal
control problem is feasible for all t ≥ 0.

Appendix I. Convergence Analysis

The second part of the proof involves demonstrating that the state ei is ultimately
bounded in Ωi. We will show that the optimal cost J?i

(
ei(t)

)
is an ISS Lyapunov func-

tion for the closed loop system (6), under the control input (11), where: J?i
(
ei(t)

)
,

Ji

(
ei(t),u

?
i

(
·; ei(t)

))
. For notational convenience, let us as define the following terms:

• u0,i(τ) , u?i
(
τ ; ei(tk)

)
as the optimal input that results from the solution to

Problem 1 based on the measurement of state ei(tk), applied at time τ ≥ tk;
• e0,i(τ) , ei

(
τ ; u?i

(
·; ei(tk)

)
, ei(tk)

)
as the predicted state at time τ ≥ tk,
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that is, the predicted state that results from the application of the above in-
put u?i

(
·; ei(tk)

)
to the state ei(tk), at time τ ;

• u1,i(τ) , ũi(τ) as the admissible input at τ ≥ tk+1 (see (H3));

• e1,i(τ) , ei
(
τ ; ũi(·), ei(tk+1)

)
as the predicted state at time τ ≥ tk+1, that is,

the predicted state that results from the application of the above input ũi(·) to
the state ei

(
tk+1; u?i

(
·; ei(tk)

)
, ei(tk)

)
, at time τ .

Before beginning to prove convergence, it is worth noting that while the cost

Ji

(
ei(t),u

?
i

(
·; ei(t)

))
, is optimal (in the sense that it is based on the optimal input,

which provides its minimum realization), a cost that is based on a plainly admissi-
ble (and thus, without loss of generality, sub-optimal) input ui 6= u?i will result in a

configuration where: Ji

(
ei(t),ui

(
·; ei(t)

))
≥ Ji

(
ei(t),u

?
i

(
·; ei(t)

))
.

Let us now begin our investigation on the sign of the difference between the cost
that results from the application of the feasible input u1,i, which we shall denote by
J i
(
ei(tk+1)

)
, and the optimal cost J?i

(
ei(tk)

)
, while recalling that: Ji

(
ei(t),ui(·)

)
=∫ t+Tp

t Fi
(
ei(s),ui(s)

)
ds + Vi

(
ei(t+ Tp)

)
:

J i
(
ei(tk+1)

)
− J?i

(
ei(tk)

)
= Vi

(
e1,i(tk+1 + Tp)

)
+

∫ tk+1+Tp

tk+1

Fi
(
e1,i(s),u1,i(s)

)
ds

−Vi
(
e0,i(tk + Tp)

)
−
∫ tk+Tp

tk

Fi
(
e0,i(s),u0,i(s)

)
ds. (I1)

Considering that tk < tk+1 < tk + Tp < tk+1 + Tp, we break down the two integrals
above in between these integrals:

J i
(
ei(tk+1)

)
− J?i

(
ei(tk)

)
=

Vi
(
e1,i(tk+1 + Tp)

)
+

∫ tk+Tp

tk+1

Fi
(
e1,i(s),u1,i(s)

)
ds+

∫ tk+1+Tp

tk+Tp

Fi
(
e1,i(s),u1,i(s)

)
ds

−Vi
(
e0,i(tk + Tp)

)
−
∫ tk+1

tk

Fi
(
e0,i(s),u0,i(s)

)
ds−

∫ tk+Tp

tk+1

Fi
(
e0,i(s),u0,i(s)

)
ds. (I2)

Let us first focus on the difference between the two intervals in (I2) over [tk+1, tk+1+Tp]:∫ tk+Tp

tk+1

Fi
(
e1,i(s),u1,i(s)

)
ds−

∫ tk+Tp

tk+1

Fi
(
e0,i(s),u0,i(s)

)
ds

≤
∣∣∣∣ ∫ tk+Tp

tk+h
Fi
(
e1,i(s),u1,i(s)

)
ds−

∫ tk+Tp

tk+h
Fi
(
e0,i(s),u0,i(s)

)
ds

∣∣∣∣
≤ LFi

∫ Tp

h

∥∥∥∥ei(tk + s; u?i (·), ei(tk + h)
)
− ei

(
tk + s; u?i (·), ei(tk)

)∥∥∥∥ds. (I3)

Consulting with Remark 3 for the two different initial conditions we
get: ei

(
tk + s; u?i (·), ei(tk + h)

)
= ei(tk + h) +

∫ tk+s
tk+h gi

(
ei(τ ; ei(tk +

h)),u?i (τ)
)
dτ , and ei

(
tk + s; u?i (·), ei(tk)

)
= ei(tk) +

∫ tk+h
tk

gi
(
ei(τ ; ei(tk)),u

?
i (τ)

)
dτ

+
∫ tk+s
tk+h gi

(
ei(τ ; ei(tk)),u

?
i (τ)

)
dτ . Subtracting the latter from the former and taking
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norms on either side yields:∥∥∥∥ei(tk + s; u?i (·), ei(tk + h)
)
− ei

(
tk + s; u?i (·), ei(tk)

)∥∥∥∥ ≤ ∥∥∥∥ei(tk + h)− ei(tk + h)

∥∥∥∥
+ Lgi

∫ s

h

∥∥∥∥ei(tk + τ ; u?i (·), ei(tk + h)
)
− ei

(
tk + τ ; u?i (·), ei(tk)

)∥∥∥∥dτ. (I4)

By using Lemma 3 and applying the the Grönwall-Bellman inequality, (I4) becomes:∥∥∥∥ei(tk + s; u?i (·), ei(tk + h)
)
−ei

(
tk + s; u?i (·), ei(tk)

)∥∥∥∥ ≤ wi
Lgi

(eLgi
h − 1)eLgi

(s−h).

Given the above result, (I3) becomes:∫ tk+Tp

tk+1

Fi
(
e1,i(s),u1,i(s)

)
ds−

∫ tk+Tp

tk+1

Fi
(
e0,i(s),u0,i(s)

)
ds

≤ LFi

wi
L2
gi

(eLgi
h − 1)(eLgi

(Tp−h) − 1). (I5)

With this result established, we turn back to the remaining terms found in (I2) and,

in particular, we focus on the integral:
∫ tk+1+Tp

tk+Tp
Fi
(
e1,i(s),u1,i(s)

)
ds. We discern that

the range of this integral has a length equal to the length of the interval where
(14) of Assumption 6 holds. Integrating (14) over the interval [tk + Tp, tk+1 + Tp],

for the controls and states applicable in it we get:
∫ tk+1+Tp

tk+Tp

(
∂Vi
∂e1,i

gi
(
e1,i(s),u1,i(s)

)
+Fi

(
e1,i(s),u1,i(s)

))
ds ≤ 0 ⇔ Vi

(
e1,i(tk+1 + Tp)

)
+
∫ tk+1+Tp

tk+Tp
Fi
(
e1,i(s),u1,i(s)

)
ds

≤ Vi
(
e1,i(tk +Tp)

)
. The left-hand side expression is the same as the first two terms in

the right-hand side of equality (I2). We can introduce the third one by subtracting it

from both sides: Vi
(
e1,i(tk+1 +Tp)

)
+
∫ tk+1+Tp

tk+Tp
Fi
(
e1,i(s),u1,i(s)

)
ds −Vi

(
e0,i(tk +Tp)

)
≤ LVi

wi
Lgi

(eLgi
h − 1)eLgi

(Tp−h). Hence, we obtain:

Vi
(
e1,i(tk+1 + Tp)

)
+

∫ tk+1+Tp

tk+Tp

Fi
(
e1,i(s),u1,i(s)

)
ds− Vi

(
e0,i(tk + Tp)

)
≤ LVi

wi
Lgi

(eLgi
h − 1)eLgi

(Tp−h). (I6)

Adding the inequalities (I5) and (I6) it is derived that:
∫ tk+Tp

tk+1
Fi
(
e1,i(s),u1,i(s)

)
ds

−
∫ tk+Tp

tk+1
Fi
(
e0,i(s),u0,i(s)

)
ds +Vi

(
e1,i(tk+1 + Tp)

)
+
∫ tk+1+Tp

tk+Tp
Fi
(
e1,i(s),u1,i(s)

)
ds

−Vi
(
e0,i(tk + Tp)

)
≤ LFi

wi
L2
gi

(eLgi
h − 1)(eLgi

(Tp−h) − 1) +LVi

wi
Lgi

(eLgi
h − 1)eLgi

(Tp−h),

and therefore (I2), by bringing the integral ranging from tk to tk+1 to the

left-hand side, becomes: J i
(
ei(tk+1)

)
−J?i

(
ei(tk)

)
+
∫ tk+1

tk
Fi
(
e0,i(s),u0,i(s)

)
ds ≤

LFi

wi
L2
gi

(eLgi
h − 1)(eLgi

(Tp−h) − 1) +LVi

wi
Lgi

(eLgi
h − 1)eLgi

(Tp−h). By rearranging

terms, the cost difference becomes bounded by: J i
(
ei(tk+1)

)
−J?i

(
ei(tk)

)
≤ ξiwi
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−
∫ tk+1

tk
Fi
(
e0,i(s),u0,i(s)

)
ds, where: ξi ,

1

Lgi

(
eLgi

h − 1

)[(
LVi

+
LFi

Lgi

)(
eLgi

(Tp−h) −

1
)

+ LVi

]
> 0, and ξiwi is the contribution of the bounded additive disturbance

wi(t) to the nominal cost difference; Fi is a positive-definite function as a sum of
a positive-definite u>i Riui and a positive semi-definite function e>i Q iei. If we de-

note by mi , λmin(Q i,Ri) ≥ 0 the minimum eigenvalue between those of matri-
ces Ri,Q i, this means that: Fi

(
e0,i(s),u0,i(s)

)
≥ mi‖e0,i(s)‖2. By integrating the

above between the interval of interest [tk, tk+1] we get: −
∫ tk+1

tk
Fi
(
e0,i(s),u0,i(s)

)
≤ −mi

∫ tk+1

tk
‖ei(s; u?i , ei(tk))‖2ds. This means that the cost difference is upper-

bounded by: J i
(
ei(tk+1)

)
−J?i

(
ei(tk)

)
≤ ξiwi −mi

∫ tk+1

tk
‖ei(s; u?i (·), ei(tk))‖2ds, and

since the cost J i
(
ei(tk+1)

)
is, in general, sub-optimal: J?i

(
ei(tk+1)

)
−J i

(
ei(tk+1)

)
≤ 0:

J?i
(
ei(tk+1)

)
−J?i

(
ei(tk)

)
≤ ξiwi −mi

∫ tk+1

tk
‖ei(s; u?i (·), ei(tk))‖2ds. Let Ξi(ei) ,

J?i (ei). Then, between consecutive times tk and tk+1 when the FHOCP is solved,
the last inequality reforms into:

Ξi
(
ei(tk+1)

)
− Ξi

(
ei(tk)

)
≤
∫ tk+1

tk

(
ξi
h
‖wi(s)‖ −mi‖ei(s; u?i (·), ei(tk))‖2

)
ds. (I7)

The functions σ
(
‖wi‖

)
,
ξi
h
‖wi‖ and α3

(
‖ei‖

)
, mi‖ei‖2 are class K functions, and

therefore, according to Lemma 4, Ξi
(
ei
)

is an ISS Lyapunov function in Ei. Given
this fact, the closed-loop system is input-to-state stable in Ei. Inevitably then, given
Assumptions 6 and 7, and condition (3) of Theorem 1, the closed-loop trajectories for
the error state of agent i ∈ V reach the terminal set Ωi for all wi(t) with ‖wi(t)‖ ≤ wi,
at some point t = t? ≥ 0. Once inside Ωi, the trajectory is trapped there because of
the implications3 of (I7) and Assumption 7.

In turn, this means that the system (6) converges to zi,des and is trapped in a vicinity
of it − smaller than that in which it would have been trapped (if actively trapped at
all) in the case of unattenuated disturbances −, while simultaneously conforming to
all constraints Zi. This conclusion holds for all i ∈ V, and hence, the overall system of
agents V is stable.

3For more details, refer to the discussion after the declaration of Theorem 7.6 in [35].
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