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Abstract: In various interaction tasks using Underwater Vehicle Manipulator Systems
(UVMSs) (e.g. sampling of the sea organisms, underwater welding), important factors such
as: i) uncertainties and complexity of UVMS dynamic model ii) external disturbances (e.g.
sea currents and waves) iii) imperfection and noises of measuring sensors iv) steady state
performance as well as v) inferior overshoot of interaction force error, should be addressed
during the force control design. Motivated by the above factors, this paper presents a model-
free control protocol for force controlling of an Underwater Vehicle Manipulator System which is
in contact with a compliant environment, without incorporating any knowledge of the UVMS’s
dynamic model, exogenous disturbances and sensor’s noise model. Moreover, the transient and
steady state response as well as reduction of overshooting force error are solely determined
by certain designer-specified performance functions and are fully decoupled by the UVMS’s
dynamic model, the control gain selection, as well as the initial conditions. Finally, a simulation
study clarifies the proposed method and verifies its efficiency.

Keywords: Underwater Vehicle Manipulator System, Nonlinear Control, Autonomous
Underwater Vehicle, Marine Robotics, Force Control, Robust Control.

1. INTRODUCTION

In view of the development of autonomous underwater
vehicles, the capability of such vehicles to interact with
the environment by the use of a robot manipulator, had
gained attention in the literature. Most of the underwater
manipulation tasks, such as maintenance of ships, under-
water pipeline or weld inspection, surveying, oil and gas
searching, cable burial and mating of underwater connec-
tor, require the manipulator mounted on the vehicle to
be in contact with the underwater object or environment.
The aforementioned systems are complex and they are
characterized by several strong constraints, namely the
complexity in the mathematical model and the difficulty to
control the vehicle. These constraints should be taken into
consideration when designing a force control scheme. In
order to increase the adaptability of UVMS, force control
must be included into the control system of the UVMS.

⋆ This work was supported by the ROBOCADEMY, Marie Curie
ITN Grant Agreement no FP7-608096 funded by the EU action
7th Framework Programme - The 2013 People Work Programme -
EC Call Identifier FP7-PEOPLE- 2013-ITN, Implementation Mode:
Multi-ITN

Although many force control schemes have been developed
for earth-fixed manipulators and space robots, these con-
trol schemes cannot be used directly on UVMS because of
the unstructured nature of the underwater environment.

From the control perspective, achieving these type of tasks
requires specific approaches(Siciliano et al., 2009). How-
ever, speaking about underwater robotics, only few publi-
cations deal with the interaction control using UVMS. On
the of the first underwater robotic setups for interaction
with the environment was presented in (Casalino et al.,
2001). Hybrid position/force control schemes for UVMS
were developed and tested in (Clegg et al., 2001; Dunnigan
et al., 1996). However, dynamic coupling between the ma-
nipulator and the underwater vehicle was not considered
in the system model. In order to compensate the contact
force, the authors in (Kajita and Kosuge, 1997) proposed a
method that utilizes the restoring force generated by the
thrusters. In the same context, position/force (Lapierre
et al., 2003), impedance control (Cui et al., 1999; Cui
and Sarkar, 2000; Cui and Yuh, 2003) and external force
control schemes (Antonelli et al., 1999, 2002, 2001) can be
found in the literature.
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Over the last years, the interaction control of UVMS is
gaining significant attention again. Several control issues
for an UVMS in view of intervention tasks has been
presented in (Marani et al., 2010). In (Cataldi and An-
tonelli, 2015) based on the interaction schemes presented
in (Antonelli et al., 2001) and (Antonelli et al., 2002), the
authors proposed a control protocol for turning valve sce-
narios. Recent study (Farivarnejad and Moosavian, 2014)
proposed a multiple impedance control scheme for a dual
manipulator mounted on AUV. Moreover, the two recent
European projects TRIDENT(see, e.g. (Fernndez et al.,
2013),(Prats et al., 2012),(Simetti et al., 2014)) and PAN-
DORA (see, e.g. (Carrera et al., 2014), (Carrera et al.,
2015)) have given boost to underwater interaction with
relevant results.

In real applications, the UVMS needs to interact with
the environment via its end-effector in order to achieve a
desired task. During the manipulation process the follow-
ing issues occur: the environment is potentially unknown,
the system is in the presence of unknown (but bounded)
external disturbances (sea currents and sea waves) and
the sensor measurements are not always accurate (we
have noise in the measurements). These issues can cause
unpredicted instabilities to the system and need to be
tackled during the control design. From the control de-
sign perspective, the UVMS dynamical model is highly
nonlinear, complicated and has significant uncertainties.
Owing to the aforementioned issues, underwater manipu-
lation becomes a challenging task in order to achieve low
overshoot, transient and steady state performance.

Motivated by the above, in this work we propose a force
- position control scheme which does not require any
knowledge of the UVMS dynamic parameters, environ-
ment model as well as the disturbances. More specifically,
it tackles all the aforementioned issues and guarantees
a predefined behavior of the system in terms of desired
overshoot and prescribed transient/steady state perfor-
mance. Moreover, noise measurements, UVMS model un-
certainties (a challenging issue in underwater robotics) and
external disturbance are considered during control design.
In addition, the complexity of the proposed control law is
significantly low. It is actually a static scheme involving
only a few calculations to output the control signal, which
enables its implementation on most of current UVMS.
The rest of this paper is organized as follows: in Sec-
tion 2 the mathematical model of UVMS and preliminary
background are given. Section 3 provides the problem
statement that we aim to solve in this paper. The control
methodology is presented in Section 4. Section 5 validates
our approach via a simulation study. Finally, conclusions
and future work directions are discussed in Section 6.

2. PRELIMINARIES

2.1 Mathematical model of the UVMS

In this work, the vectors are denoted with lower bold
letters whereas the matrices by capital bold letters. The
end effector coordinates with respect to (w.r.t) the inertial
frame {I} are denoted by xe ∈ R

6. Let q = [q⊤
a , q⊤

m]⊤ ∈
R

n be the state variables of the UVMS, where qa =
[η⊤1 , η

⊤
2 ]⊤ ∈ R

6 is the vector that involves the position

vector η1 and orientation η2 of the vehicle w.r.t to the
inertial frame {I} and qm ∈ R

n−6 is the vector of
angular position of the manipulator’s joints. Thus, we have
(Antonelli, 2013; Fossen, 1994):

q̇a = Ja(qa)v (1)

where

Ja(qa) =

[

Jt(η2) O(3×3)

O(3×3) Jr(η2)

]

∈ R
6×6

is the Jacobian matrix transforming the velocities from the
body-fixed to the inertial frame and where, 03×3 is the
zero matrix of the respective dimensions, vi is the vector
of body velocities of the vehicle and Jt(η2) and Jr(η2) are
the corresponding parts of the Jacobian related to position
and orientation respectively. Moreover, for the augmented
UVMS system the following forward kinematic equation
holds(Antonelli, 2013):

xe = T(q) (2)

where xe = [pxe,
o x⊤

e ]
⊤ ∈ R

6 denotes the coordinates of
end-effector frame which include the vector of position pxe

and orientation oxe of the end-effector. T(·) is the homo-
geneous transformation matrix describing the position and
orientation of the end-effector coordinates with reference
to the inertial frame {I}. Eq. (2) yields (Antonelli, 2013):

ẋe = J(q)ζ (3)

where ζ = [v⊤, q̇⊤
m]⊤ is the velocity vector including the

body velocities of the vehicle as well as the joint velocities
of the manipulator and J(q) is the geometric Jacobian
Matrix (Antonelli, 2013).

2.2 Dynamics

The dynamics of a UVMS using (1) and after some alge-
braic manipulations can be written as Antonelli (2013):

M̄(q)q̈+C̄(q̇,q)q̇+D̄(q̇,q)q̇+ḡ(q)+J⊤λ+ δ(t) =τ (4)

where δ(t) are bounded disturbances including system’s
uncertainties as well as the external disturbances affecting
on the system from the environment (sea waves and
currents), λ = [f⊤e ,ν⊤

e ]⊤ the generalized vector including
force fe and torque νe that the UVMS exerts on the
environment at its end-effector frame. Moreover, τ denotes
the vector of control inputs (forces and torques), M̄(q)
is the positive definite inertial matrix, C̄(q̇,q) represents
coriolis and centrifugal terms, D̄(q̇,q) models dissipative
effects, ḡ(q) encapsulates the gravity and buoyancy effects.
λ is the vector of forces and torques that exerted by
the UVMS at its end-effector frame on the environment.
Moreover, the dynamic equation (4) can be written in
terms of task space coordinates as follows Khatib (1987):

M(xe)ẍe+C(ẋe,xe)ẋe+D(ẋe,xe)ẋe

+g(xe)+λ+J⊤δ(t) =u (5)

where

M(xe) = J−⊤M̄(q)J+

C(ẋe,xe) = J−⊤C̄(q̇,q)J+
i + J−⊤M̄(q)J̇+

D(ẋe,xe) = J−⊤D̄(q̇,q)J+

g(xe) = J−⊤ḡ(q)

and u ∈ R
6 denotes the task space control input wrenches.

It is worth mentioning that the control input vector τ , can
be computed from the task space control input u via:

τ = J⊤u+ (In×n − J⊤J#⊤)τ 0



where J#⊤ = JM̄−1[JM̄−1J⊤]−1 is the dynamically con-
sistent generalized inverse of the robot Jacobian Khatib
(1987, 1988). The vector τ 0 is a redundancy term without
contribution to the end-effector’s wrench and thus can be
regulated independently to achieve sub-secondary tasks.

2.3 Dynamical Systems

Consider the initial value problem:

ξ̇ = H(t, ξ), ξ(0) = ξ0 ∈ Ωξ, (6)

with H : R≥0 × Ωξ → R
n, where Ωξ ⊆ R

n is a non-empty
open set.

Definition 1. (Sontag, 1998) A solution ξ(t) of the initial
value problem (6) is maximal if it has no proper right
extension that is also a solution of (6).

Theorem 1. (Sontag, 1998) Consider the initial value
problem (6). Assume that H(t, ξ) is: a) locally Lipschitz
in ξ for almost all t ∈ R≥0, b) piecewise continuous in t
for each fixed ξ ∈ Ωξ and c) locally integrable in t for each
fixed ξ ∈ Ωξ. Then, there exists a maximal solution ξ(t)
of (6) on the time interval [0, τmax), with τmax ∈ R>0 such
that ξ(t) ∈ Ωξ, ∀t ∈ [0, τmax).

Proposition 1. (Sontag, 1998) Assume that the hypothe-
ses of Theorem 1 hold. For a maximal solution ξ(t) on the
time interval [0, τmax) with τmax < ∞ and for any compact
set Ω′

ξ ⊆ Ωξ, there exists a time instant t′ ∈ [0, τmax) such

that ξ(t′) /∈ Ω′
ξ.

3. PROBLEM STATEMENT

We define here the problem that we aim to solve in this
paper:

Problem 1. Given a UVMS system as well as a desired
force profile that should be applied by the UVMS on an
entirely unknown model compliant environment, assum-
ing the uncertainties on the UVMS dynamic parameters,
design a feedback control law such that the following are
guaranteed:

(1) a predefined behavior of the system in terms of
desired overshoot and prescribed transient and steady
state performance.

(2) robustness with respect to the external disturbances
and noise on measurement devises.

4. CONTROL METHODOLOGY

In this work we assume that the UVMS is equipped with
a force/torque sensor at its end-effector frame. However,
we assume that its accuracy is not perfect and the system
suffers from noise in the force/torque measurements. In
order to combine the features of stiffness and force control,
a parallel force/position regulator is designed. This can
be achieved by closing a force feedback loop around
a position/velocity feedback loop, since the output of
the force controller becomes the reference input to the
dynamic controller of the UVMS.

4.1 Control Design

Let pxd
e ∈ R

3 be the reference position of the end-effector
that must be reached by the end-effector’s position xe.

Also, interaction between the end-effector and a friction-
less, elastically compliant environment is assumed as:

fe = Kf (
pxe −

px
q
e) (7)

that models the compliant environment, where Kf =
diag{K(f,1), . . . ,K(f,3)} ∈ R

3×3 is the positive semi-
definite translational stiffness matrix, which represents
the elastic coefficient of the environment (see (Siciliano
and Villani, 1999)), pxq

e is the equilibrium position of the
undeformed environment which is constant w.r.t the time
(i.e. pẋq

e = 0) and fe = [fe,1, . . . , fe,3]
⊤ is already stated,

the force exerted by the end-effector on the environment
during the interaction. Equation (7) after time differenti-
ation results in:

ḟe = Kf
pẋe (8)

Let now fde be the desired force corresponding to the
desired end-effector position pxd

e (7). Hence, let us define
the force error:

ef (t) = fe(t) + ∆fe(t)− fde (t) ∈ R
3, (9)

where ∆fe(t) denotes the bounded noise on the force’s
measurement. Also we define the end-effector orientation
error as:

eo(t) =
oxe(t)−

ox
d
e(t) ∈ R

3, (10)

where oxd
e(t) ∈ R

3 is predefined desired orientation of the

end-effector (e.g. oxd
e(t) = [0, 0, 0]⊤). Now we can set

the vector of desired end-effector configuration as xd
e(t) =

[fde (t)
⊤, (oxd

e(t))
⊤]⊤. Notice that the desired force fde (t)

can be related with the end-effector position via (7). In
addition the overall error vector is given as:

ex(t) = [ex1
(t), . . . , ex6

(t)] = [e⊤f (t), e
⊤
o (t)]

⊤ (11)

A suitable methodology for the control design in hand
is that of prescribed performance control, recently pro-
posed in (Bechlioulis and Rovithakis, 2011, 2014), which
is adapted here in order to achieve predefined transient
and steady state response bounds for the errors. Pre-
scribed performance characterizes the behavior where the
aforementioned errors evolve strictly within a predefined
region that is bounded by absolutely decaying functions
of time, called performance functions. The mathematical
expressions of prescribed performance are given by the
inequalities:−ρxj

(t) < exj
(t) < ρxj

(t), j = 1, . . . , 6, where

ρxj
: [t0,∞) → R>0 with ρxj

(t) = (ρ0xj
− ρ∞xj

)e−lxj
t +

ρ∞xj
and lxj

> 0, ρ0xj
> ρ∞xj

> 0, are designer specified,
smooth, bounded and decreasing positive functions of time
with positive parameters lxj

, ρ∞xj
, incorporating the desired

transient and steady state performance respectively. In
particular, the decreasing rate of ρxj

, which is affected by
the constant lxj

introduces a lower bound on the speed of
convergence of exj

. Furthermore, the constants ρ∞xj
can be

set arbitrarily small, achieving thus practical convergence
of the errors to zeros.

Now, we propose a state feedback control protocol u(t),
that does not incorporate any information regarding the
UVMS dynamic model (5) and stiffens matrix Kf , and
achieves tracking of the smooth and bounded desired force
trajectory fde (t) ∈ R

3 as well as oxd
e(t) with an priori

specified convergence rate and steady state error. Thus,
given the errors (11):

Step I-a: Select the corresponding functions ρxj
(t) =

(ρ0xj
− ρ∞xj

)e−lxj
t + ρ∞xj

with ρ0xj
> |exj

(t0)|, ∀j ∈ {1 . . . , 6}



ρ0xj
> ρ∞xj

> 0, lxj
> 0, ∀j ∈ {1, . . .6}, in order to incor-

porate the desired transient and steady state performance
specification and define the normalized errors:

ξxj
(t) =

exj
(t)

ρxj
(t)

, j = {1, . . . , 6} (12)

Step I-b: Define the transformed errors εxj
as:

εxj
(ξxj

) = ln
(1 + ξxj

1− ξxj

)

, j = {1, . . . , 6} (13)

Now, the reference velocity as ẋr
e = [ẋr

e1
, . . . , ẋr

e6
]⊤ is

designed as:

ẋr
ej
(t) = −kxj

εxj
(ξxj

), kj > 0, j = {1, . . . , 6} (14)

Step II-a: Define the velocity error vector at the end-
effector frame as:

ev(t) = [ev1(t), . . . , ev6(t)]
⊤ = ẋe(t)− ẋr

e(t) (15)

and select the corresponding functions ρvj (t) = (ρ0vj −

ρ∞vj )e
−lvj t + ρ∞vj with ρ0vj > |evj (t0)|, ∀j ∈ {1 . . . , 6},

ρ0vj > ρ∞vj > 0, lvj > 0, ∀j ∈ {1, . . .6}, and define the
normalized velocity errors ξv as:

ξv(t) = [ξv1 , . . . , ξv6 ]
⊤ = P1

v(t)ev(t) (16)

where P1
v(t) = diag{ρvj}, j ∈ {1, . . . , 6}.

Step II-b: Define the transformed errors εv(ξv) =
[εv1(ξv1), . . . , εv6(ξv6 )]

⊤ and the signalRv(ξv) = diag{rvj},
j ∈ {1, . . . , 6} as:

εv(ξv) =
[

ln
(1 + ξv1
1− ξv1

)

, . . . , ln
(1 + ξv6
1− ξv6

)]⊤

(17)

Rv(ξv)=diag{rvj(ξvj)}=diag
{ 2

1− ξ2vj

}

, j={1, . . . , 6}

(18)

and finally design the state feedback control law uj , j ∈
{1, . . . , 6} as:

uj(ξxj
, ξvj, t) = −kvj

rvj (ξvj )εvj (ξvj )

ρvj (t)
, j = {1, . . . , 6} (19)

where kvj to be a positive gain. The control law (19) can
be written in vector form as:

u(ex(t), ev(t), t) = [u1(ξx1
, ξv1 , t), . . . , u6(ξx6

, ξv6 , t)]
⊤

−KvP
−1(t)Rv(ξv)εv(ξv) (20)

with Kv to be the diagonal matrix containing kvj . Now we
are ready to state the main theorem of the paper:

Theorem 2. Given the error defined in (11) and the
required transient and steady state performance speci-
fications, select the exponentially decaying performance
function ρxj

(t), ρvj (t) such that the desired performance
specifications are met. Then the state feedback control law
of (20) guarantees tracking of the trajectory fde (t) ∈ R

3 as

well as oxd
e(t):

lim
t→∞

fe(t) = fde (t) and lim
t→∞

oxe(t) =
oxd

e(t)

with the desired transient and steady state performance
specifications.

Proof. For the proof we follow parts of the approach
in (Bechlioulis and Rovithakis, 2014). We start by dif-
ferentiating (12) and (16) with respect to the time and
substituting the system dynamics (5) as well as (14) and
(19) and employing (11) and (15), obtaining:

ξ̇xj
(ξxj

, t) = hxj
(ξxj

, t)

= ρ−1
xj

(t)(ėxj
(t)− ρ̇xj

(t)ξxj
)

= ρ−1
xj

(t)(−kxj
εxj

(ξxj
) + ξvjρvj (t)− ẋd

ej
(t))

− ρ−1
xj

(t)(ρ̇xj
(t)ξxj

), ∀j ∈ {1, . . . , 6} (21)

ξ̇v(ξv, t) = hv(ξv, t)

= P−1
v ((ẍe − ẍd

e)− Ṗ−1
v ξ̇v)

= −KvP
−1
v M−1P−1

v Rvεv−

−P−1
v

[

M−1
(

C · (Pvξv + ẋr
e) +D · (Pvξv + ẋr

e)

+ g+ λ+J⊤δ(t)
)

+ Ṗvξv +
∂

∂t
ẋr
e

]

(22)

Now let us to define the vectors of normalized state
error and the generalized normalized error as ξx =
[ξx1

, . . . , ξx6
]⊤, and ξ = [ξ⊤x , ξ

⊤
v ]

⊤, respectively. The equa-
tions of (21) and (22) now can be written in compact form
as:

ξ̇ = h(ξ, t) = [h⊤
v (ξv , t), h

⊤
v (ξv , t)] (23)

Let us define the open set Ωξ = Ωξx × Ωξv with Ωξx =
Ωξv = (−1, 1)6. In what follows, we proceed in two phases.
First we ensure the existence of a unique maximal solution
ξ(t) of (23) over the set Ωξ for a time interval [0, tmax]
(i.e., ξ(t) ∈ Ωξ, ∀t ∈ [0, tmax]). Then, we prove that the
proposed controller (20) guarantees, for all t ∈ [0, tmax]
the boundedness of all closed loop signal of (23) as well as
that ξ(t) remains strictly within the set Ωξ, which leads
that tmax = ∞ completes the proof.

Phase A: The set Ωξ is nonempty and open, thus by
selecting ρ0xj

> |exj
(0)| and ρ0vj > |evj (0)|, ∀j ∈ {1, . . .6}

we guarantee that ξx(0) ∈ Ωx and ξv(0) ∈ Ωv. Addition-
ally, h is continuous on t and locally Lipschitz on ξ over
Ωξ. Therefore, the hypotheses of Theorem1 hold and the
existence of a maximal solution ξ(t) of (23) on a time
interval [0, tmax] such that ξ(t) ∈ Ωξ, ∀t ∈ [0, tmax] is
ensured.

Phase B: In the Phase A we have proven that ξ(t) ∈
Ωξ, ∀t ∈ [0, tmax], thus it can be concluded that:

ξcj (t) =
ecj
ρcj

∈ (−1, 1), ∀j{1, . . . , 6}, c ∈ {x, v} (24)

for all t ∈ [0, tmax], from which we obtain that exj
(t) and

evj (t) are absolutely bounded by ρxj
and ρvj , respectively.

Therefore, the error vectors εxj
(ξxj

), ∀j ∈ {1, . . . , 6} and
εvj (ξvj ), ∀j ∈ {1, . . . , 6} defined in (13) and (18), respec-
tively, are well defined for all t ∈ [0, tmax]. Hence, consider
the positive definite and radially unbounded functions
Vxj

(εxj
) = ε2xj

, ∀j{1, . . . , 6}. Differentiating of Vxj
w.r.t

time and substituting (21), results in:

V̇xj
=−

4εxj

(1− ξ2xj
)ρxj

(

kxj
εxj

(ξxj
)+ẋd

ej
+ρ̇xj

(t)ξxj
−ρvj(t)ξvj

)

(25)

since ẋd
ej
,ρxj

,ρvj are bounded by construction and ξxj
,ξvj

are bounded in (−1, 1), owing to (24), V̇xj
becomes:

V̇xj
== −

4

(1− ξ2xj
)ρxj

(

Bx|εxj
| − kxj

|εxj
|2
)

(26)

∀t ∈ [0, tmax], where Bx is an unknown positive constant
independent of tmax satisfying Bx > |ẋd

ej
+ ρ̇xj

(t)ξxj
−



[

fd
e (t)

oxd
e(t)

]

Proposed Control Algorithm

ex(t) first level

ẋr
e(ξxj

, t)

ẋr
e(ξxj

, t) second level

u(ex, ev, t)
UVMS

external disturbance
δ(t)

Environment

force sensor

noise

fe(t) + ∆fe(t)

Fig. 1. The closed loop block diagram of the proposed control scheme.

ρvj(t)ξvj |. Therefore, we conclude that V̇xj
is negative when

εxj
> Bx

kjx
and subsequently that

|εxj
(ξxj

(t))| ≤ ε̄xj
= max{εxj

(ξxj
(0)),

Bx

kjx
} (27)

∀t ∈ [0, tmax], ∀j{1, . . . , 6}. Furthermore, from (13), taking
the inverse logarithm, we obtain:

−1 <
e−ε̄xj − 1

e−ε̄xj + 1
= ξ

xj
≤ ξxj

(t) ≤ ξ̄xj
=

eε̄xj − 1

eε̄xj + 1
< 1

(28)

∀t ∈ [0, tmax], j ∈ {1, . . . , 6}. Due to (28), the reference
velocity vector ẋr

e as defined in (14), remains bounded for
all t ∈ [0, tmax]. Moreover, invoking ẋe = ẋr

e(t) + Pv(t)ξv
from (15), (16) and (24), we also conclude the boundedness
of ẋe for all t ∈ [0, tmax]. Finally, differentiating ẋr

e(t)
w.r.t time and employing (21), (24) and (28), we conclude
the boundedness of ∂

∂t
ẋr
e(t), ∀t ∈ [0, tmax]. Applying the

aforementioned line of proof, we consider the positive
definite and radially unbounded function Vv(εv) =

1
2 ||ε||

2.
By differentiating Vv with respect to time, substituting
(22) and by employing continuity of M, C, D, g, λ, δ, ξx,

ξv,Ṗv,
∂
∂t
ẋr
e, ∀t ∈ [0, tmax], we obtain:

V̇v ≤ ||P−1
v Rv(ξv)εv||

(

Bv −KvλM ||P−1
v Rv(ξv)εv||

)

∀t ∈ [0, tmax], where λM is the minimum singular value
of the positive definite matrix M−1 and Bv is a positive
constant independent of tmax, satisfying

Bv ≥||M−1
(

C · (Pvξv + ẋr
e(t)) +D · (Pvξv + ẋr

e(t))

+ g + λ+ J⊤δ(t) + Ṗvξv +
∂

∂t
ẋr
e

)

||

Thus, V̇v is negative when ||P−1
v Rv(ξv)εv|| > Bv(KvλM )−1,

which by employing the definitions of Pv and Rv, becomes
||εv|| > Bv(KvλM )−1 max{ρ0v1 , . . . , ρ

0
v6
}. Therefore, we

conclude that:

||εv(ξv(t))≤ ε̄v =max

{

εv(ξv(0)),Bv(KvλM )−1 ·max{ρ0v1 , . . . , ρ
0

v6
}

}

∀t ∈ [0, tmax]. Furthermore, from (18), invoking that
|εvj | ≤ ||εv||, we obtain:

−1 <
e−ε̄vj − 1

e−ε̄vj + 1
= ξ

vj
≤ ξvj (t) ≤ ξ̄vj =

eε̄vj − 1

eε̄vj + 1
< 1

(29)

∀t ∈ [0, tmax], j ∈ {1, . . . , 6} which also leads to the
boundedness of the control law (20). Now, we will show
that the tmax can be extended to ∞. Obviously, notice by
(28) and (29) that ξ(t) ∈ Ω

′

ξ = Ω
′

ξx
× Ω

′

ξv
, ∀t ∈ [0, tmax],

where:

Ω
′

ξc
= [ξ

c1
, ξ̄c1 ]× . . . ,×[ξ

c6
, ξ̄c6 ], c ∈ {x, v}

are nonempty and compact subsets of Ωξx and Ωξv , respec-

tively. Hence, assuming that tmax < ∞ and since Ωξ ⊂ Ω
′

ξ,
Proposition 1, dictates the existence of a time instant
t
′

∈ ∀t ∈ [0, tmax] such that ξ(t
′

) /∈ Ω
′

ξ, which is a clear
contradiction. Therefore, tmax = ∞. Thus, all closed loop
signals remain bounded and moreover ξ(t) ∈ Ω

′

ξ, ∀t ≥ 0.

Finally, from (12) and (28) we conclude that:

−ρxj
<

e−ε̄xj − 1

e−ε̄xj + 1
ρxj

≤ exj
(t) ≤ ρxj

eε̄xj − 1

eε̄xj + 1
< ρxj

(30)

for j ∈ {1, . . . , 6} and for all t ≥ 0 and consequently,
completes the proof.

Remark 1. From the aforementioned proof, it is worth
noticing that the proposed control scheme is model free
with respect to the matrices M, C, D, g as well as the
external disturbances δ that affect only the size of ε̄cj , c ∈
{x, v} but leave unaltered the achieved convergence prop-
erties as (30) dictates. In fact, the actual transient and
steady state performance is determined by the selection
of the performance function ρcj , c ∈ {x, v}. Finally the
closed loop block diagram of the proposed control scheme
is indicated in Fig.1.

5. SIMULATION RESULTS

A simulation study was conducted employing a dynamic
simulator built in MATLAB. The dynamic equation of



UVMS used in this simulator is derived following Schjlberg
and Fossen (1994). The UVMS model considered in the
simulations is the SeaBotix LBV150 equipped with a
4 DoF manipulator. We consider a scenario involving
3D motion in workspace, where the end-effector of the
UVMS is in interaction on a compliant environment with
stiffens matrix Kf = diag{2} which is unknown for the
controller. The workspace at the initial time, including

Fig. 2. Workspace including the UVMS and the compliant
environment. The UVMS is run under the influence
of external disturbances.

UVMS and the compliant environment are depicted in
Fig.2. More specifically, we adopt: fe(0) = [0, 0, 0]⊤ and
oxe = [0.2, 0.2,−0.2]⊤. It means that at the initial time
of the simulation study we assume that the uvms has
attached the compliant environment with a rotation at
its end-effector frame. The control gains for the two set
of the simulation studies were selected as follows: kxj

=
−0.2j ∈ {1, . . . , 6}, kvj = −5j ∈ {1, . . . , 6}. Moreover,
the dynamic parameters of UVMSs as well as the stiffens
matrix Kf were considered unknown for the controller.
The parameters of the performance functions in sequel
stimulation studies were chosen as follows: ρ0x1

= 2, ρ0xj
=

1, j ∈ {2, 3}, ρ0xj
= 0.4, j ∈ {4, 5, 6}, ρ0vj = 2, j ∈

{1, 2, 3}, ρ0vj = 1, j ∈ {4, 5, 6}, ρ∞xj
= 0.05 j ∈ {1, . . . , 6},

ρ∞vj = 0.15 j ∈ {1, . . . , 6}, lxj
= 6 j ∈ {1, 2, 3}, lxj

=

2 j ∈ {4, 5, 6}, lvj = 4 j ∈ {1, 2, 3}, lvj = 2.5 j ∈ {4, 5, 6}.
Finally, the whole system was running under the influence
of external disturbances (e.g., sea current) acting along x
and y axis (on the vehicle body) and bounded at 0.1 N ,
in order to test the robustness of the proposed scheme.
Moreover, bounded noise on measurement devices were
considered during the simulation study.

Two set of simulation studies are presented here. In the
first scenario, a constant desired force should be exerted
to the environment while predefined orientation must be
kept. The desired constant force and the orientation are
fde = [0.6, 0, 0]⊤ and oxd

e = [0.0, 0.0, 0.0]⊤ respectively.
The results are depicted in Figs 3-4. The evolution of
the errors at the first and second level of the proposed
controller are indicated in Fig.3 and Fig.4, respectively. It
can be concluded that even with the influence of external
disturbances as well as noise in measurements, the errors
in all directions converge close to zero and remain bounded
by the performance functions.

Fig. 3. Constant scenario: The evolution of the errors at
the first level of the proposed control scheme. The
errors and performance bounds are indicated by blue
and red color respectively.

Fig. 4. Constant scenario: The evolution of the errors at
the second level of the proposed control scheme. The
errors and performance bounds are indicated by blue
and red color respectively.



In the second simulation scenario, tracking of a desired
force trajectory on the compliant environment is pre-
sented. One should bear in mind that this is a challenging
task because of the dynamic nature of the underwater
environment. The UVMS’s model uncertainties and exter-
nal disturbances in this case can easily cause unpredicted
instabilities to the system. The desired force trajectory
considered in this simulations is fd

e1
= 0.3 sin(2π2 t) + .3.

The results is depicted in Figs 5-7. Again, it can be seen

Fig. 5. Trajectory scenario: The evolution of the force
trajectory. The desired force trajectory and the actual
force exerted by the UVMS are indicated by green and
red color respectively.

that the errors in all directions converge close to zero
and remain bounded by the performance functions. Fig5
show the evolution of the force trajectory. Obviously, the
actual force exerted by the UVMS (indicated by red color)
converges to the desired one (indicated by green color)
without overshooting and follows the desired force profile.
Finally this work is accompanied by a video demonstrating
the aforementioned simulation study which can be also
found in HD quality at: https://youtu.be/klKatFAADHM

6. CONCLUSIONS AND FUTURE WORK

This work presents a robust force/position control scheme
for a UVMS in interaction with a compliant environment,
which could have direct applications in the underwater
robotics (e.g. sampling of the sea organisms, underwater
welding, pushing a button). Our proposed control scheme
does not required any priori knowledge of the UVMS
dynamical parameters as well as environment model. It
guarantees a predefined behavior of the system in terms
of desired overshot and transient and steady state perfor-
mance. Moreover, the proposed control scheme is robust
with respect to the external disturbances and measure-
ment noises. The proposed controller of this work exhibits
the following important characteristics: i) it is of low
complexity and thus it can be used effectively in most
of today UVMS. ii) The performance of the proposed
scheme (e.g. desired overshot, steady state performance of
the systems) is a priori and explicitly imposed by certain
designer-specified performance functions, and is fully de-
coupled by the control gains selection, thus simplifying the
control design. The simulations results demonstrated the
efficiency of the proposed control scheme. Finally, future

Fig. 6. Trajectory scenario: The evolution of the errors at
the first level of the proposed control scheme. The
errors and performance bounds are indicated by blue
and red color respectively.

Fig. 7. Trajectory scenario: The evolution of the errors at
the second level of the proposed control scheme. The
errors and performance bounds are indicated by blue
and red color respectively.



research efforts will be devoted towards addressing the
torque controller as well as conducting experiments with
a real UVMS system.
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