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Abstract

This paper deals with the problem of time-constrained navigation of a robot modeled by
uncertain nonlinear non-affine dynamics in a bounded workspace of Rn. Initially, we provide
a novel class of robust feedback controllers that drive the robot between Regions of Interest
(RoI) of the workspace. The control laws consists of two parts: an on-line controller which
is the outcome of a Finite Horizon Optimal Control Problem (FHOCP); and a backstepping
feedback law which is tuned off-line and guarantees that the real trajectory always remains
in a bounded hyper-tube centered along the nominal trajectory of the robot. The proposed
controller falls within the so-called tube-based Nonlinear Model Predictive control (NMPC)
methodology. Then, given a desired high-level specification for the robot in Metric Inter-
val Temporal Logic (MITL), by utilizing the aforementioned controllers, a framework that
provably guarantees the satisfaction of the formula is provided. The proposed framework
can handle the rich expressiveness of MITL in both safety and reachability specifications.
Finally, the proposed framework is validated by numerical simulations.

Keywords: Robust Control, Predictive Control for Nonlinear Systems, Autonomous Sys-
tems.

1 Introduction

Navigation is an important field in both the robotics and the control communities, due to the
need for autonomous control [1–5]. Applications arise in the fields of autonomous driving and
air-traffic management. In another line of research, the problem of controlling systems under
high-level specifications has been gaining significant research attention [6–9]. The aim of this
work is to address a robot navigation problem under high-level tasks which include both time
constrained reachability and safety.

The qualitative specification language that has primarily been used to express the high-level
tasks is Linear Temporal Logic (LTL) [10]. A suitable temporal logic for dealing with tasks
that are required to be completed within certain time bounds is Metric Interval Temporal Logic
(MITL). MITL has been originally proposed in [11] and has been used for controller synthesis
in [12–15]. Given robot dynamics and an MITL formula, the controller synthesis procedure is
as follows: first, the robot dynamics are abstracted into a discrete representation, the so-called
Weighted Transition System (WTS), in which the time duration for navigating between states
is modeled by a weight in WTS (abstraction); second, a product between the WTS and an
automaton that accepts the runs that satisfy the given formula is computed; and third, once
an accepting run in the product found, it maps into a sequence of feedback controllers of the
robot dynamics.

∗The authors are with the School of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, Stockholm, Sweden. E-mail: {anikou,dimos}@kth.se. This work was supported by the H2020
ERC Grant BUCOPHSYS, the EU H2020 Co4Robots project, the Swedish Foundation for Strategic Research
(SSF), the Swedish Research Council (VR) and the Knut och Alice Wallenberg Foundation (KAW).
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The main focus of this paper is the first part of the aforementioned procedure. In partic-
ular, we aim to provide an abstraction of robot dynamics into WTS in such a way that the
rich MITL expressiveness in both reachability and safety specifications is exploited. In order
address this problem, and due to the fact that the robot dynamics are highly nonlinear, un-
der state/input constraints as well as under the presence of external disturbances/unmodeled
dynamics, a Nonlinear Model Predictive Control (NMPC) framework is used [16–22].

One of the main challenges in NMPC is the efficient handling of the external distur-
bances/uncertainties. A promising robust strategy, originally proposed for discrete-time linear
systems in [23], is the so called tube-based approach. Tube-based approaches for affine in the
control continuous-time nonlinear systems with constant matrices multiplying the control input
vectors have been proposed in [24], which we aim to extend here in order to cover a larger
class of nonlinear systems. Preliminary results in tube-based NMPC for nonlinear non-affine
systems that state and input space have the same dimension can be found in our earlier work
[25]. In the current paper, these results are extended to underactuated systems, which arise in
robotic applications with Lagrangian kinematics/dynamics models and their controller design
constitutes a challenging task.
By taking into consideration the aforementioned, the contribution of this paper is twofold:

• given a robot modeled by uncertain nonlinear non-affine dynamics and a workspace with
RoI, under standard NMPC and controllability assumptions, a systematic control design
methodology for tube-based NMPC which guarantees robust navigation between RoI un-
der safety constraints is developed;

• we exploit the aforementioned control design in order to abstract the dynamics of the
robot into a WTS. Then, given an MITL formula that the robot needs to satisfy for all
times, by performing an MITL control synthesis procedure, a sequence of control laws
that guarantees the satisfaction of the formula is provided.

This constitutes a novel solution to a time-constrained navigation problem for systems with
general uncertain dynamics and input/state constraints, in which complex tasks that include
both reachability and safety are imposed.

The rest of this manuscript is structured as follows: Section 2 provides the notation that
will be used as well as necessary background knowledge; In Section 3, the problem treated in
this paper is formally defined; Section 4 contains the main results of the paper; Section 5 is
devoted in numerical simulations; and in Section 6, conclusions and future research directions
are discussed.

2 Notation and Preliminaries

The sets of positive integers, positive rational numbers and real numbers are denoted by N,
Q+ and R, respectively. Given a set S, denote by |S| its cardinality, by SN = S × · · · × S its
N -fold Cartesian product and by 2S the set of all its subsets. Given a vector y ∈ Rn denote
by ‖y‖2 :=

√
y>y and ‖y‖B :=

√
y>By, B ≥ 0 its Euclidean and weighted norm, respectively;

λmin(B) stands for the minimum absolute value of the real part of the eigenvalues of B ∈ Rn×n;
0m×n ∈ Rm×n and In ∈ Rn×n stand for the m×n matrix with all entries zeros and the identity
matrix, respectively. The notation diag{B1, . . . , Bn} stands for the block diagonal matrix with
the matrices B1, . . . , Bn in the main diagonal; B(χ, r) := {y ∈ Rn : ‖y − χ‖2 ≤ r} stands for
the n-th dimensional ball with center and radius χ ∈ Rn, r > 0, respectively. Given a function
f : Rn → Rm, ∂fi

∂xj
denotes the element of row i and column j of the Jacobian matrix of f , with

i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Given two vectors x, y ∈ Rn their convex hull is defined by:

C(x, y) := {θx+ (1− θ)y : θ ∈ (0, 1)}.
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A vector of a canonical basis of Rn is defined by:

ein :=
[
0, . . . , 0, 1︸︷︷︸

i−th element

, 0, . . . , 0
]>
. (1)

Given sets S1, S2 ⊆ Rn and matrix B ∈ Rn×m, the Minkowski addition, the Pontryagin differ-
ence and the matrix-set multiplication are respectively defined by:

S1 ⊕ S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2},
S1 	 S2 := {s1 : s1 + s2 ∈ S1, ∀s2 ∈ S2},
B ◦ S := {b : ∃s ∈ S, b = Bs}.

Lemma 1. [25] For any constant ρ > 0, vectors y1, y2 ∈ Rn and matrix B ∈ Rn×n, B > 0 it
holds that:

y1By2 ≤
1

4ρ
y>1 By1 + ρy>2 By2.

Proposition 1. (Mean value theorem for vector valued functions [26]) Consider a function
f : Rn → Rm which is differentiable on an open set S ⊆ Rn. Let x, y two points of S such that
C(x, y) ⊆ S. Then, there exist constant vectors $1, . . . , $m ∈ C(x, y) such that:

f(x)− f(y) =

 m∑
k=1

n∑
j=1

ekm(ejn)>
∂fk($k)

∂xj

 (x− y). (2)

Definition 1. [25] Consider a dynamical system χ̇ = f(χ, u, d) where: χ ∈ X , u ∈ U , d ∈ D
with initial condition χ(0) ∈ X . A set X ′ ⊆ X is a Robust Control Invariant (RCI) set for the
system, if there exists a feedback control law u := κ(χ) ∈ U , such that for all χ(0) ∈ X ′ and for
all d(t) ∈ D it holds that χ(t) ∈ X ′ for all t ≥ 0, along every solution χ(t).

Definition 2. [12] A Weighted Transition System (WTS) is a tuple (S, S0,Act,−→, t,Σ, L)
where S is a finite set of states; S0 ⊆ S is a set of initial states; Act is a set of actions;
−→⊆ S × Act× S is a transition relation; t :−→→ Q+ is a map that assigns a positive weight
to each transition; Σ is a finite set of atomic propositions (an atomic proposition σ ∈ Σ is a
statement that is either true or false); and L : S → 2Σ is a labeling function.

Definition 3. [12] A timed run of a WTS is an infinite sequence rt = (r(0), τ(0))(r(1), τ(1)) . . .,
such that r(0) ∈ S0, and for all l ≥ 0, it holds that r(l) ∈ S and (r(l), u(l), r(l + 1)) ∈−→ for a
sequence of actions u(0)u(1)u(2) . . . with u(l) ∈ Act, ∀l ≥ 0. The time stamps τ(l), l ≥ 0 are
inductively defined as: 1) τ(0) = 0; 2) τ(l + 1) := τ(l) + t(r(l), r(l + 1)), ∀l ≥ 0.

The syntax of MITL (see [11]) over a set of atomic propositions Σ is defined by the grammar:

ϕ := σ | ¬ϕ | ϕ1 ∧ ϕ2 | ©I ϕ | ♦Iϕ | �Iϕ | ϕ1 UI ϕ2,

where σ ∈ Σ, and ©, ♦, � and U are the next, eventually, always and until temporal operator,
respectively; ¬, ∧ are the negation and conjunction operators, respectively; I = [a, b] ⊆ Q+

where a, b ∈ [0,∞] with a < b is a non-empty timed interval. MITL formulas are interpreted
over timed runs like the ones produced by a WTS which is given in Definition 3. For the
semantics of MITL see [12, Sec. II, p. 2]. Any MITL formula ϕ over Σ can be algorithmically
translated into a Timed Büchi Automaton (TBA) with the alphabet 2Σ, such that the language
of timed words that satisfy ϕ is the language of timed words produced by the TBA [27]. Due to
space constraints, for a detailed preliminary background regarding timed verification we refer
the reader to [12].
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3 Problem Formulation

3.1 System Model

Consider a robot operating in a workspace W ⊆ Rn governed by the following uncertain
kinematics-dynamics model :

χ̇ = v, (3a)

v̇ = f(χ, v, u) + d, (3b)

where χ ∈ W denotes the state of the robot in the workspace (position, orientation); v ∈ Rn
stands for the velocity; u ∈ Rn is the control input; f : Rn × Rn × Rn → Rn is a continuous
nonlinear function; and d ∈ Rn stands for external disturbances, uncertainties and unmodeled
dynamics. The velocity is constrained in a connected set V ⊆ Rn which contains the origin. The
control inputs need to satisfy u ∈ U , where U is a convex set containing the origin. Consider also
bounded disturbances d ∈ D := {d ∈ Rn : ‖d‖2 ≤ d̃}, where d̃ > 0. Define the corresponding
nominal dynamics for (3a)-(3b) by:

χ̇ = v, (4a)

v̇ = f(χ, v, u), (4b)

where w ≡ 0, χ ∈ W, v ∈ V and u ∈ U . Define J :W ×V × U → Rn × Rn by:

J(χ, v, u) =

n∑
i=1

n∑
j=1

ein(ejn)>
∂fi(χ, v, u)

∂uj
, (5)

where fi is the i-th component of the vector-valued function f , and ein, ejn as given in (1).

Assumption 1. f is continuously differentiable with respect to x, v and u in W ×V ×U with
f(0, 0, 0) = 0.

Assumption 2. The linear system η̇ = Aη + Bu, where η := [χ>, v>]> ∈ R2n, that is the
outcome of the Jacobian linearization of the nominal dynamics (4a)-(4b) around the equilibrium
state (χ, v) = (0, 0) is stabilizable.

Assumption 3. There exists a constant J such that:

λmin

[
J(·) + J(·)>

2

]
≥ J > 0,∀χ ∈ W, v ∈ V, u ∈ U . (6)

In the given workspace, there exist m ∈ N Regions of Interest (RoI) labeled by M :=
{1, . . . ,m}. Without loss of generality, assume that the RoI are modeled by balls, i.e., Rm :=
B(ym, pm), m ∈ M, where ym and pm > 0 stands for the center and radius of RoI Rm,
respectively. Define also the the union of RoI by

R :=
⋃

m∈M
Rm.

Due to the fact that we are interested in imposing safety specifications to the robot, at each
time t ≥ 0, the robot is occupying a ball B(χ(t), r) that covers its volume, where χ(t) and r > 0
are its center and radius, respectively. Assume that min

m∈M
{pm} > r, which means that the RoI

have sufficiently larger volume than the robot.
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3.2 Objectives

The control objective is the navigation of the robot with dynamics as in (3a)-(3b) between
RoI so that it obeys a given high-level timed specification over atomic tasks. Atomic tasks are
captured through a given finite set of atomic propositions Σ. Each RoI is labeled with atomic
propositions that hold true there. Define the labeling function:

L : R → 2Σ, (7)

which maps each RoI with a subset of atomic propositions that hold true there. Note that some
of the RoI may be assigned with labels that indicate unsafe regions, i.e., the robot is required
to avoid visiting them (safety specifications).

Definition 4. A trajectory x(t) is uniquely associated with a timed run rt = (r(0), τ(0))
(r(1), τ(1))(r(2), τ(2)) . . ., where r(l) ∈ R, ∀l ∈ N, is a sequence of RoI that the robot crosses,
if the following hold:

1. τ(0) = 0, i.e., the robot starts the motion at time t = 0;

2. B(x(τ(0)), r) ( r(0), i.e., initially, the volume of the robot is entire within the RoI r(0) ∈
R;

3. B(x(τ(l)), r) ( r(l), ∀l ∈ N, i.e., the robot changes discrete state only when its entire
volume is contained in the corresponding RoI;

4. τ(l + 1) := τ(l) + t(r(l), r(l + 1)), ∀l ∈ N, where:

t : R×R → Q+, (8)

is a function that models the duration that the robot needs to be driven between regions
r(l) and r(l + 1).

Definition 5. A trajectory χ(t) satisfies an MITL formula ϕ over the set of atomic propositions
Σ, formally written as χ(t) |= ϕ, ∀t ≥ 0, if and only if there exists a timed run rt to which the
trajectory χ(t) is uniquely associated, according to Definition 4, which satisfies ϕ. For MITL
semantics see [12, Sec. II, p. 2]).

3.3 Problem Statement

The problem considered in this paper is stated as follows:

Problem 1. Consider a robot governed by dynamics (3a)-(3b), covered by the ball B(χ(t), r),
operating in the workspace W ⊆ Rn. The workspace contains the RoI Rm, m ∈ M modeled
also by balls. Given a task specification formula ϕ expressed in MITL over the set of atomic
propositions Σ and labeling functions L as in (7). Then, for every d ∈ D, design a feedback
control law u = κ(χ, v) ∈ U such that the robot trajectory in the workspace fulfills the MITL
specification ϕ, i.e., χ(t) |= ϕ, ∀t ≥ 0, according to Definition 4. Moreover, the robot is required
to remain in the workspace for all times.

Remark 1. Note that Problem 1 constitutes a general time-constrained navigation problem
due to the fact that the dynamics (3a)-(3b) arise in many robotic applications. Furthermore,
the rich expressiveness of MITL in both reachability and safety specifications can be exploited.
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4 Main Results

In this section, the aforementioned control design problem is addressed by taking the following
steps:

1. For navigating the robot between RoI, we propose a robust NMPC feedback law that has
two components: an on-line control law which is the outcome of a Finite Horizon Optimal
Control Problem (FHOCP) solved at each sampling time; a state feedback law whose gain
is designed off-line and guarantees that the trajectory of the closed loop system remains
in a hyper-tube for all times. The time duration for navigating between RoI is explicitly
provided. (Section 4.1)

2. Then, the dynamics (3a)-(3b) are abstracted into a WTS, exploiting the fact that the timed
runs in the WTS project onto uniquely associated trajectories according to Definition 4.
(Section 4.2)

3. By invoking ideas from our previous works [12, 15], a controller synthesis procedure that
gives a sequence of control laws that serve as solution to Problem 1 is performed. (Section
4.3).

4.1 Feedback Control Design

Consider a robot with dynamics (3a)-(3b) occupying a RoI Rs ∈ R at time ts ≥ 0. The feedback
control law needs to guarantee that the robot is navigated towards a desired RoI Rd ∈ R,
Rs 6= Rd without intersecting with any other RoI, due to the fact that safety specifications
are required. Denote by χd ∈ Rd the center of the desired RoI Rd. Define the error vector
e := χ− χd ∈ Rn. The uncertain error kinematics/dynamics are given by:

ė = v, (9a)

v̇ = f(e+ χd, v, u) + d, (9b)

and the corresponding nominal error kinematics/dynamics by:

ė = v, (10a)

v̇ = f(e+ χd, v, u). (10b)

By recalling that B(χ(t), r) stands for the volume of the robot at time t, define the set that
captures the state constraints by:

X := {χ(t) ∈ Rn : B(χ(t), r) (W,B(χ(t), r) ∩ {R\{Rs,Rd}} = ∅}.

The two constraints refer to the fact that the robot needs to remain in the workspace for all
times and the fact that it should not intersect with any other RoI except from Rs, Rd. In
order to translate the aforementioned constraints for the error state e, define the set E := {e ∈
Rn : e ∈ X ⊕ (−χd)}, where ⊕ is the Minkowski addition operator given in Section 2. Under
this modification, by using basic properties of Minkowski operator ⊕, it is guaranteed that
χ ∈ X ⇔ e ∈ E . Consider the feedback control law:

u := u(e, v) + κ(e, v, e, v), (11)

which consists of a nominal control action u(e, v) ∈ U and a state feedback law κ : Rn × Rn ×
Rn × Rn → Rn. The control action u(e, v) will be the outcome of a nominal FHOCP which is
solved on-line at each sampling time. The feedback law κ(·) is tuned off-line and it is used to
guarantee that the real states e, v remain in a bounded hyper-tube centered along the nominal
states e, v. Define by ẽ := e − e ∈ Rn, ṽ := v − v ∈ Rn the deviation between the real
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states of the uncertain system (9a)-(9b) and the states of the nominal system (10a)-(10b) with
ẽ(0) = ṽ(0) = 0. It will be proved hereafter that the states ẽ, ṽ are invariant in a compact
set whose volume depends of the bounds of the derivatives of f as well as the bound d̃. The
dynamics of the states ẽ, ṽ are written as:

˙̃e = ė− ė = v − v = ṽ, (12a)

˙̃v = v̇ − v̇ = f(e+ χd, v, u)− f(e+ χd, v, u) + d

= f(e+ χd, v, u)− f(e+ χd, v, u)f(e+ χd, v, u)− f(e+ χd, v, u) + d

= λ(e, e, v, v, u, u) + f(e+ χd, v, u)− f(e+ χd, v, u) + d. (12b)

where the function λ is defined by λ(e, e, v, v, u, u) := f(e + χd, v, u) − f(e + χd, v, u) and is
upper bounded by:

‖λ(·)‖2 ≤ ‖(e+ χd, v, u)− f(e+ χd, v, u)‖2 + ‖f(e+ χd, v, u)− f(e+ χd, v, u)‖2
≤ L1‖ẽ‖2 + L2‖ṽ‖2
≤ L(‖ẽ‖2 + ‖ṽ‖2).

The constants L1, L2 stand for the Lipschitz constants of function f with respect to variables
χ and v, respectively, and L := max{L1, L2}.

Lemma 2. The state feedback law designed as:

κ(e, e, v, v) = −k(e− e)− k(v − v), (13)

where k > 0 is chosen such that:

k > 1
J

[
(1 + 2ρ)L+ 5

4

]
, ρ > L

2 , (14)

renders the sets:

Ω1 :=
{
ẽ(t) ∈ Rn : ‖ẽ(t)‖2 ≤ d̃√

min{α1,α2}
, ∀t ≥ 0

}
, (15a)

Ω2 :=
{
ṽ(t) ∈ Rn : ‖ṽ(t)‖2 ≤ 2d̃√

min{α1,α2}
, ∀t ≥ 0

}
, (15b)

RCI sets for the error dynamics (12a), (12b), according to Definition 1. The constants α1,
α2 > 0 are defined by:

α1 := 1− L
2ρ , α2 := kJ − (1 + 2ρ)L− 5

4 . (16)

Proof. A backstepping control design technique originally proposed in [28] will be adopted.
The state ṽ can be seen as a virtual input to be designed for system (12a) such that the
function L1(e) = 1

2‖ẽ‖
2
2 is always decreasing. The time derivative of L1 along the solutions

of system (12a)-(12b) is given by L̇1(ẽ) = ẽ>ṽ. Thus, by designing ṽ = −ẽ, it yields that
L̇1(ẽ) = −‖ẽ‖22 < 0. Define the backstepping auxiliary errors ζ1, ζ2 ∈ Rn by ζ1 := ẽ and
ζ2 := ṽ + ẽ. Then, the auxiliary error dynamics are written as:

ζ̇1 = −ζ1 + ζ2, (17a)

ζ̇2 = −ζ1 + ζ2 + λ(·)
+ f(e+ χd, v, u)− f(e+ χd, v, u) + d, (17b)

with:

‖λ(·)‖2 ≤ L(‖ẽ‖2 + ‖ṽ‖2)
= L(‖ζ1‖2 + ‖ζ1 − ζ2‖2)
≤ 2L‖ζ1‖2 + L‖ζ2‖2,

7



and ζ1(0) = ζ2(0) = 0. Define the stack vector ζ := [ζ>1 , ζ
>
2 ]> ∈ R2n and consider the candidate

Lyapunov function L(ζ) = 1
2‖ζ‖

2
2 with L(0) = 0. The time derivative of L along the trajectories

of system (17a)-(17b) is given by:

L̇(ζ) = ζ>ζ̇ = ζ>1 ζ̇1 + ζ>2 ζ̇2

≤ −‖ζ1‖22 + (L+ 1)‖ζ2‖22 + 2L‖ζ1‖2‖ζ2‖2 + ζ>2 d

+ ζ>2 [f(e+ χd, v, u)− f(e+ χd, v, u)] .

By using Lemma 1 for B = I2 we have:

‖ζ1‖2‖ζ2‖2 ≤
‖ζ1‖22

4ρ + ρ‖ζ2‖22,

ζ>2 d ≤
‖ζ2‖22

4 + ‖d‖22,

with ρ as given in (14). Then, it holds that:

L̇(ζ) ≤−
(

1− L
2ρ

)
‖ζ1‖22 +

[
(1 + 2ρ)L+ 5

4

]
‖ζ2‖22

+ ζ>2 [f(e+ χd, v, u)− f(e+ χd, v, u)] + d̃2.

According to Proposition 1, and due to the fact that the set U is convex, i.e., C(u, u) ⊆ U , there
exist constant vectors $1, . . . , $n ∈ C(u, u) such that:

f(e+ χd, v, u)− f(e+ χd, v, u) =
n∑
i=1

n∑
j=1

ein(ejn)> ∂fi(e+χd,v,$k)
∂uj

(u− u)

= J(e+ χd, v, ·)(u− u).

Then, we get:

L̇(ζ) ≤ −
(

1− L
2ρ

)
‖ζ1‖22 +

[
(1 + 2ρ)L+ 5

4

]
‖ζ2‖22

+ ζ>2 J(e+ χd, v, ·)(u− u) + d̃2.

By designing the feedback control law as u−u = κ(e, v, e, v) = −kζ2 = −kẽ−kṽ = −k(e− e)−
k(v − v), which is the same as in (13) and compatible with (11), we get:

L̇(ζ) ≤ −
(

1− L
2ρ

)
‖ζ1‖22 +

[
(1 + 2ρ)L+ 5

4

]
‖ζ2‖22 − kζ>2 J(e+ χd, v, ·)ζ2 + d̃2

≤ −
(

1− L
2ρ

)
‖ζ1‖22 +

[
(1 + 2ρ)L+ 5

4

]
‖ζ2‖22 − kλmin

[
J(·)+J(·)>

2

]
‖ζ2‖22 + d̃2,

which by using (6) of Assumption 3 becomes:

L(ζ) ≤ −α1‖ζ1‖22 − α2‖ζ2‖22 + d̃2

≤ −min{α1, α2}‖ζ‖22 + d̃2,

with α1, α2 given in (16). Thus, L̇(ζ) < 0 when ‖ζ‖2 > d̃√
min{α1,α2}

. Taking the latter into

consideration and the fact that ζ(0) = 0 we have that ‖ζ(t)‖2 ≤ d̃√
min{α1,α2}

, ∀t ≥ 0. In order

to transform the bounds of the auxiliary states ζ1, ζ2 and ζ into bounds on the states ẽ, ṽ,
consider the following inequalities:

‖ẽ‖2 = ‖ζ1‖2 ≤ ‖ζ‖2,

⇒ ‖ẽ(t)‖2 ≤ d̃√
min{α1,α2}

, ∀t ≥ 0,
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and: ∣∣∣‖ṽ‖2 − ‖ẽ‖2∣∣∣ ≤ ‖ṽ + ẽ‖2 = ‖ζ2‖2 ≤ ‖ζ‖2

⇒ ‖ṽ(t)‖2 ≤ 2d̃√
min{α1,α2}

,∀t ≥ 0,

which concludes the proof.

Remark 2. According to Lemma 2, the volume of the hyper-tube which is centered along the
nominal trajectories e(t), v(t) of system (10a)-(10b), depends on d̃, which is the upper bound
of the disturbances d, and on L, J , which are the bounds of the derivatives of f . By tuning the
parameters k, ρ from (14) appropriately, the volume of the tube can be adjusted.

Assumption 4. It holds that:

inf
m,m′∈M,
m6=m′

‖pm − pm′‖2 > 2r + 2d̃√
min{α1,α2}

,

i.e., there is sufficient space between any RoI such that the robot can navigate without inter-
secting them.

Remark 3. Assumptions 1, 2 are standard assumptions required for the NMPC nominal sta-
bility to be guaranteed (see [17]). Assumption 3 is a sufficient controllability condition for
nonlinear systems in non-affine form (see [29]). Assumption 4 is a geometric condition that the
workspace should fulfill in order for the robot to be able to navigate between RoI and meet the
time constraints imposed by the desired formula ϕ.

Consider a sequence of sampling times {tk}, k ∈ N, with a constant sampling period 0 <
h < T , where T is a finite prediction horizon such that tk+1 := tk +h, ∀k ∈ N. At every discrete
sample time, a FHOCP is solved as follows:

min
u(·)

{
‖ξ(tk + T )‖2P +

∫ tk+T

tk

[
‖ξ(s)‖2Q + ‖u(s)‖2R

]
ds

}
(18a)

subject to:

ξ̇(s) = g(ξ(s), u(s)), ξ(tk) = ξ(tk), (18b)

ξ(s) ∈ E × V, u(s) ∈ U , ∀s ∈ [tk, tk + T ], (18c)

ξ(tk + T ) ∈ F , (18d)

where ξ := [e>, v>]> ∈ R2n, g(ξ, u) :=

[
v

f(e+ χd, v, u)

]
; Q, P ∈ R2n×2n and R ∈ Rn×n are

positive definite gain matrices to be appropriately tuned. We will explain hereafter the sets E ,
V, U and F .

In order to guarantee that while the FHOCP (18a)-(18d) is solved for the nominal dynamics
(10a)-(10b), the real states e, v and control inputs u satisfy the corresponding state E , V and
input constraints U , respectively, the following modification is performed:

E := E 	 Ω1, V := V 	 Ω2, U := U 	
[
Λ ◦ Ω

]
,

with Λ := diag{−kIn,−kIn} ∈ R2n×2n, Ω := Ω1×Ω2, the operators 	, ◦ as defined in Section 2,
and Ω1, Ω2 as given in (15a), (15b), respectively. Intuitively, the sets E , V and U are tightened
accordingly, in order to guarantee that while the nominal states e, v and the nominal control
input u are calculated, the corresponding real states e, v and real control input u satisfy the
state and input constraints E , V and U , respectively. This constitutes a standard constraints
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MITL2TBA

ϕ

A

⊗ T̃T synthesis r̃abstractionχ̇ = v
v̇ = f(x, v, u) + d

u(x, v)

Figure 1: A graphical illustration of the combined abstraction and controller synthesis framework.

set modification technique adopted in tube-based NMPC frameworks (for more details see [24],
[25]). Define the terminal set by:

F :=
{
ξ ∈ E × V : ‖ξ‖P ≤ ε

}
, ε > 0, (19)

which is used to enforce the stability of the system [17]. In particular, supposing that Assump-
tion 1, 2 hold, it can be proven that (see [17, Lemma 1, p. 4]), for a sufficiently small ε, there
exists a local controller uloc := Kξ ∈ U , K > 0 which guarantees that:

d
dt

(
‖ξ‖2P

)
≤ −‖ξ‖2

Q̃
, ∀ξ ∈ F ,

with Q̃ := Q+K>RK > 0. The following theorem guarantees the robust robot navigation from
RoI Rs to RoI Rd without intersecting any other RoI and always remaining in the workspace
W.

Theorem 1. Suppose that Assumptions 1-4 hold. Let ts ≥ 0 be the time at which the robot
occupies RoI Rs and χd be the center of a desired RoI Rd. Suppose also that the FHOCP (18a)-
(18d) is feasible at time ts. Then, the feedback control law (11) applied to the system (9a)-(9b)
guarantees that there exists a finite time td > ts such that ∀t ≥ td it holds that:

‖χ(t)− χd‖2 ≤ ε√
λmin(P )

+ d̃√
min{α1,α2}

, (20a)

‖v(t)‖2 ≤ ε√
λmin(P )

+ 2d̃√
min{α1,α2}

. (20b)

Proof. The proof of the theorem consists of two parts:
Feasibility Analysis: It can be shown that recursive feasibility is established and it implies
subsequent feasibility. The proof of this part is similar to the feasibility proof of [25, Theorem
2, Sec. 4, p. 12], and it is omitted here due to space constraints.
Convergence Analysis: Recall that e = χ− χd, ẽ = e− e and ṽ = v − v. Then, we get:

‖χ(t)− χd‖2 ≤ ‖e(t)‖2 + ‖ẽ(t)‖2,
‖v(t)‖2 ≤ ‖v(t)‖2 + ‖ṽ(t)‖2,

which by using the fact that ‖e‖2, ‖v‖2 ≤ ‖ξ‖2 it becomes:

‖χ(t)− χd‖2 ≤ ‖ξ(t)‖2 + ‖ẽ(t)‖2,
‖v(t)‖2 ≤ ‖ξ(t)‖2 + ‖ṽ(t)‖2.

Moreover, by using the bounds from (15a), (15b) the latter inequalities become:
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Algorithm 1 Computation of td := t(Rs,Rd)

1: Input: ts, χ(tk), v(tk), k ∈ N;
2: Output: td;
3: tk ← ts;
4: flag← 1
5: while flag = 1 do
6: measure χ(tk), v(tk);
7: if ‖χ(tk)− χd‖2 ≤ ε√

λmin(P )
and ‖v(tk)‖2 ≤ ε√

λmin(P )
then

8: flag← 0; break;
9: Go to “line 12”

10: end if
11: tk ← tk + h;
12: end while
13: td ← tk;

‖χ(t)− χd‖2 ≤ ‖ξ(t)‖2 + d̃√
min{α1,α2}

, (21a)

‖v(t)‖2 ≤ ‖ξ(t)‖2 + 2d̃√
min{α1,α2}

,∀t ≥ ts. (21b)

The nominal state ξ is controlled by the nominal control action u ∈ U which is the outcome
of the solution to the FHOCP (18a)-(18d) for the nominal dynamics (10a)-(10b). Hence, by
invoking nominal NMPC stability results found in [17,30,31], the state ξ(t) is driven to terminal
set F , given in (19), in finite time, and it remains there for all times. Thus, there exist a finite
time td > ts such that ξ(t) ∈ F , ∀t ≥ td. From (19), the latter implies that:

‖ξ(t)‖P ≤ ε, ∀t ≥ td ⇒ ‖ξ(t)‖2 ≤ ε√
λmin(P )

, ∀t ≥ td.

The latter implication combined by (21a)-(21b) leads to the conclusion of the proof.

Theorem 1 implies that the robot with dynamics as in (3a)-(3b), starting at time ts in RoI
Rs, is driven by the controller (11) towards a desired RoI Rd, while all constraints imposed to
the system are satisfied, i.e., the robot does not intersects with other RoI and always remains in
the workspace W. Moreover, by observing (20a) it holds that at time td the error ‖χ(t)− χd‖2
has reached the steady-state, i.e., the robot has been navigated to the desired RoI Rd at time td.
Recalling (8) and taking into consideration the aforementioned discussion, td models the time
that the robot needs to be driven from Rs to Rd, i.e., td = t(Rs,Rd), and it can be computed
by Algorithm 1. Intuitively, as time evolves, the norm of the states of the robot robot is being
monitored at each sampling time tk until the inequalities of line 7 of Algorithm 1 are satisfied,
i.e., when the trajectory of the robot has reached the steady-state. When they are satisfied, the
robot is within RoI Rd and the time constant td = t(Rs,Rd) has been computed.

4.2 Discrete System Abstraction

We have provided so far a feedback control law that drives the robot with dynamics as in (3a)-
(3b) from RoI Rs to RoI Rd within time t(Rs,Rd). The abstraction that captures the dynamics
of the robot into a WTS is given through he following definition:

Definition 6. The motion of the robot in the workspace W is modeled by the WTS T = (S,
S0, Act, −→, t, Σ, L) where:

• S = R =
⋃
m∈MRm is the set of states of the robot that contains all the RoI of the

workspace W;

11



• S0 ⊆ S is a set of initial states defined by the robot’ s initial position χ(0) in the workspace;

• Act is the set of actions containing the union of all feedback controllers (11) which can
navigate the robot between RoI;

• −→⊆ S × Act × S is the transition relation. We say that (Rs, u,Rd) ∈−→, with Rs,
Rs ∈ R with Rs 6= Rd if there exist feedback control law u ∈ Act as in (11) which can
drive the robot from the region Rs to the region Rd without intersecting with any other
RoI of the workspace;

• t and L is the time weight and the labeling function as given in (7) and (8), respectively;
Σ is the set of atomic propositions imposed by Problem 1.

The aforementioned WTS will allow us to work directly at the discrete level and design a
sequence of feedback controllers as in (11) that solve Problem 1. By construction, each timed
run produced by the WTS T , as timed run given in Definition 3, is uniquely associated with
the trajectory χ(t) of the system (3a)-(3b), as given in Definition 4. Hence, if we find a timed
run of T satisfying the given MITL formula ϕ, we also find a desired timed word of the original
system, and hence a trajectory χ(t) that is a solution to Problem 1.

4.3 Controller Synthesis

Fig. 1 depicts a framework under which a sequence of feedback control laws u(χ, v) that
guarantee the satisfaction of the MITL formula ϕ can be computed. First, a TBA A that
accepts all the timed runs satisfying the specification formula ϕ is constructed. Second, a
product between the WTS T given in Definition 6 and the TBA A is computed which gives
the product WTS T̃ . By performing graph search to the product WTS T̃ , a timed run that
satisfies the MITL formula ϕ can be found. For more details regarding the control synthesis
procedure we refer to our previous work [12,15]

Proposition 2. The solution that it is obtained from the aforementioned controller synthesis
procedure provides a sequence of feedback control laws u(χ, v) as in (11) that guarantees the
satisfaction of the formula ϕ of the robot governed by dynamics as in (3a)-(3b), thus, providing
a solution to Problem 1.

5 Simulation Results

For a simulation example, consider a robot operating in a workspace W = {x, y ∈ R : −5 ≤
x, y ≤ 5} ⊆ R2 with dynamics:

ẋ = v1,

ẏ = v2,

v̇1 = 0.25x2 + u1 + 0.25 cos(t),

v̇2 =
0.1− 0.1e−x

1 + e−x
+ 0.25y2 + u2 + 0.1u3

2 + 0.25 sin(t),

where χ = [x, y]> ∈ R2, v = [v1, v2]> ∈ R2, u = [u1, u2]> ∈ R2, d = [0.25 cos(t), 0.25 sin(t)]>

and d̃ = 0.25. From (6), we get J(χ, v, u) =

[
1 0
0 1 + 0.3u2

2

]
, which results in λmin

[
J(·)+J(·)>

2

]
≥

J = 1. The velocity and input constraints are:

V = {v ∈ R2 : −5 ≤ v1, v2 ≤ 5},
U = {u ∈ R2 : −2.125 ≤ u1, u2 ≤ 2.125},

12



x [m]
-5 -4 -3 -2 -1 0 1 2 3 4 5

y
[m

]

-5

-4

-3

-2

-1

0

1

2

3

4

5

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

χ(t)
χ(t)

Figure 2: The evolution of the trajectory robot in the workspace W. RoI and unsafe regions are depicted with
blue and red color, respectively. The tube of the robot is depicted with light gray color. The real and the nominal
trajectories χ(t) and χ(t), respectively, are depicted with orange and dashed black color. The robot successfully
satisfies the task ϕ given in (22).
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Figure 3: The evolution of the real errors e1(t) = x(t)− xdes, e2(t) = y(t)− ydes and the corresponding nominal
errors e1(t) = x(t)− xdes, e2(t) = y(t)− xdes for the transition between R1-R3.

respectively. The Lipschitz constant is L = 2.5. The initial states of the robot are χ(0) =
[−3.8, 3.8]> and v(0) = [0, 0]>. The sampling time and the prediction horizon are set to h =
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Figure 4: The real and the nominal velocity signals v1(t), v2(t) and v1(t), v2(t), respectively for the transition
between R1-R3. It holds that vi(t) ∈ V, i ∈ {1, 2}.

0.1 sec, T = 1.2 sec, respectively. The NMPC gains are set to Q = P = I4, R = 0.5I2.
In the workspace we have m = 14 RoI with radius pm = 0.7, ∀m ∈M from which 6 of them

stand for unsafe regions that the robot is required not to visit (depicted with red color in Fig.
2). The desired MITL formula is set as:

ϕ = �[0,∞){¬obs} ∧ ♦[6,12]{goal1} ∧ ♦[20,30]{goal2}, (22)

over the set of atomic propositions Σ = {obs, goal1, goal2} and labeling function L(R5) =
{goal1}, L(R11) = {goal2}, L(Ri) = {obs}, i ∈ {2, 4, 6, 7, 8, 10} and L(Ri) = ∅, i ∈ {1, 3, 9, 12,
13, 14}. Fig. 2 depicts the workspace with RoI, unsafe regions, the nominal trajectory of the
robot (orange color), the real trajectory of the robot (black color) and the tube centered along
the nominal trajectory. By using Algorithm 1 the time duration of the transitions between
RoI R1-R3, R3-R5, R5-R9, R9-R12 and R12-R11 are t(R1,R3) = 5.2 sec, t(R3,R5) = 6.1 sec,
t(R5,R9) = 4.5 sec, and t(R9,R12) = 7.1 sec and t(R12,R11) = 4.8 sec, respectively. According
to Fig. 2, the robot never visits the unsafe RoI. Furthermore, it navigates to goal RoI R5 and
R11 at time 11.3 sec, 27.7 sec, respectively, which results in a successful satisfaction of ϕ. Thus,
χ(t) |= ϕ, ∀t ≥ 0. The error signals for the transition between RoI R1-R3 are depicted in Fig.
3. The evolution of the velocities v1(t) and v2(t) is presented in Fig. 4. The control effort for
the transition from R1 to R3 is presented in Fig. 5. Finally, Fig. 6 shows a more detailed zoom
in the tube of the trajectory of the robot.

The simulation was conduced in MATLAB R2015a by using optimization tools found in
[19]. It takes 34.2 sec on a laptop with 4 cores, i7-2.80 GHz CPU and 16GB of RAM.

6 Conclusions and Future Research

This paper addresses the problem of robot navigation under time constraints given in MITL.
The robot is operating in a workspace which is a subset of Rn and it is modeled by nonlinear
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Figure 5: The control input signals u1(t), u2(t) for navigating the robot between R1-R3. It holds that ui(t) ∈ U ,
i ∈ {1, 2}.

non-affine kinematics/dynamics. A robust tube-based NMPC scheme which guarantees robust
transitions between RoI of the workspace is proposed. By utilizing algorithmic and verification
tools from previous work, a framework of controller synthesis which computes the sequence of
feedback control laws that provably satisfies the given formula is provided. Future research
will be devoted towards extending the current framework to multi-robot systems with event-
triggered control communication laws.
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[19] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms.
London: Springer-Verlag, 2011.

[20] A. Nikou, S. Heshmati-alamdari, C. K. Verginis, and D. V. Dimarogonas, “Decentralized
Abstractions and Timed Constrained Planning of a General Class of Coupled Multi-Agent
Systems,” 56th IEEE Conference on Decision and Control (CDC), pp. 990–995, Melbourne,
Australia, 2017.

[21] A. Filotheou, A. Nikou, and D. V. Dimarogonas, “Decentralized Control of Uncertain
Multi-Agent Systems with Connectivity Maintenance and Collision Avoidance,” European
Control Conference (ECC), ArXiv Link: https://arxiv.org/abs/1710.09204, 2018.

[22] C. K. Verginis, A. Nikou, and D. V. Dimarogonas, “Communication-based Decentralized
Cooperative Object Transportation Using Nonlinear Model Predictive Control,” European
Control Conference (ECC), ArXiv Link: https://arxiv.org/abs/1803.07940, 2018.

[23] W. Langson, I. Chryssochoos, S. Rakovic, and D. Mayne, “Robust Model Predictive Control
Using Tubes,” Automatica, vol. 40, no. 1, pp. 125–133, 2004.

[24] S. Yu, C. Maier, H. Chen, and F. Allgöwer, “Tube MPC Scheme Based on Robust Con-
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