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Robust Trajectory Tracking Control for
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Abstract— This article addresses the tracking control problem
of 3-D trajectories for underactuated underwater robotic vehicles
operating in a constrained workspace including obstacles. More
specifically, a robust nonlinear model predictive control (NMPC)
scheme is presented for the case of underactuated autonomous
underwater vehicles (AUVs) (i.e., unicycle-like vehicles actuated
only in the surge, heave, and yaw). The purpose of the controller
is to steer the unicycle-like AUV to the desired trajectory with
guaranteed input and state constraints (e.g., obstacles, predefined
vehicle velocity bounds, and thruster saturations) inside a par-
tially known and dynamic environment where the knowledge of
the operating workspace is constantly updated via the vehicle’s
onboard sensors. In particular, considering the sensing range
of the vehicle, obstacle avoidance with any of the detected
obstacles is guaranteed by the online generation of a collision-free
trajectory tracking path, despite the model dynamic uncertainties
and the presence of external disturbances representing ocean
currents and waves. Finally, realistic simulation studies verify
the performance and efficiency of the proposed framework.

Note to Practitioners—This article was motivated by the prob-
lem of robust trajectory tracking for an autonomous underwater
vehicle (AUV) operating in an uncertain environment where the
knowledge of the operating workspace (e.g., obstacle positions)
is constantly updated online via the vehicle’s onboard sensors
(e.g., multibeam imaging sonars and laser-based vision systems).
In addition, there may be other system limitations (e.g., thruster
saturation limits) and other operational constraints, induced by
the need of various common underwater tasks (e.g., a predefined
vehicle speed limit for inspecting the seabed, and mosaicking),
where it should also be considered into the control strategy. How-
ever, based on the existing trajectory tracking control approaches
for underwater robotics, there is a lack of an autonomous control
scheme that provides a complete and credible control strategy
that takes the aforementioned issues into consideration. Based on
this, we present a reliable control strategy that takes into account
the aforementioned issues, along with dynamic uncertainties
of the model and the presence of ocean currents. In future
research, we will extend the proposed methodology for multiple
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AUV performing collaborative inspection tasks in an uncertain
environment.
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I. INTRODUCTION

DURING the last decades, considerable progress has been
made in the field of unmanned marine vehicles, with

a significant number of results in a variety of marine activ-
ities [1]. Applications such as ocean forecasting, deep-sea
exploration, underwater inspection of oil/gas pipelines are
indicative examples of applications that require the underwater
robots to work under various constraints and increased levels
of autonomy. In particular, autonomous underwater vehicles
(AUVs) are characterized by constrained high-dimensional
nonlinear dynamics, especially in the case of underactuated
systems that induce significant complexity regarding model
uncertainty as well as various operational constraints, such as
sensing capabilities and visibility constraints [2].

A typical marine control problem is trajectory tracking [3].
Classical approaches such as local linearization and input–
output decoupling have been used in the past to design
motion controllers for underwater vehicles [4]. Nevertheless,
the aforementioned methods yielded poor closed-loop per-
formance, and the results were local, around only certain
selected operating points. Output feedback linearization [5]
is an alternative approach that, however, is not always pos-
sible. Moreover, based on a combined approach involving
the Lyapunov theory and backstepping, various model-based
nonlinear controllers have been proposed in the literature
requiring very accurate knowledge of the vehicle dynamic
parameters, which, in most cases, is quite difficult to obtain
[6]. Moreover, the effect of ocean currents either is assumed
to be known or an exponential observer is adopted for its
estimation, thus increasing the design complexity [7].

Dynamic model uncertainties of AUVs have been mainly
compensated by employing adaptive control techniques [8].
However, the application of these control strategies in a real-
time experiment is questionable due to their sensitivity to
unknown parameters. In addition, based on switching control
strategies and backstepping techniques, a hybrid parameter
adaptation law was presented in [9] and [10]. However,
external disturbances and unmodeled dynamics were not con-
sidered. Moreover, sliding mode control, due to its strong
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robustness against the uncertain model and time-varying para-
meters, is an alternative method that has been adopted in order
to meet the problem of the dynamic model’s uncertainties
[11]–[13]. Nonetheless, the main disadvantage of the afore-
mentioned control schemes is the inherent control input chat-
tering that is energy intensive and may result in high-frequency
dynamics, which is undesirable for underwater applications.
Finally, adaptive neural network [11], [14], learning [15],
[16], and fuzzy control [17], [18] schemes that deal with
model uncertainties by exploiting the universal approximation
capabilities of neural network and fuzzy system structures,
but unfortunately, yield inevitably reduced levels of robustness
against modeling imperfections [19].

In addition, by employing all of the aforementioned motion
control strategies, it is not always feasible or straightforward to
incorporate input (generalized body forces/torques or thrust)
and state (3-D obstacles and velocities) constraints into the
vehicle’s closed-loop motion [20]. In that sense, the trajectory
control problem of underwater robots continues to pose con-
siderable challenges to system designers, especially in view
of the high-demanding missions envisioned by the marine
industry (e.g., surveillance of oil platforms and cable tracking).
In this context, nonlinear model predictive control (NMPC)
[21] can be considered a suitable approach for complex under-
water missions, as it is able to handle efficiently input and state
constraints, while dealing with parameter uncertainties through
its robustness [22]. A sampling-based model predictive control
scheme was proposed in [23] for motion control of underwater
vehicles in the presence of constraints. A depth control strategy
for an overactuated AUV based on linear model predictive
control was presented in [24]. However, actuator limits were
the only considered constraints of the system. In [25], an MPC
framework was proposed for the trajectory tracking of a full-
actuated AUV under state constraints without taking into
account the effects of disturbances and model uncertainties.
In the aforementioned studies, the validation of the proposed
strategies was conducted via simple simulation tests. Experi-
mental validation of an NMPC scheme for robust stabilization
of an AUV was presented in [20].

The reference trajectory for the underwater robot is usually
the result of some path planning techniques [26]. The majority
of planning techniques are based on offline optimization
schemes that consider static or quasi-static operational envi-
ronments. Their output is often a set of waypoints or tra-
jectories satisfying certain environmental constraints (i.e.,
known obstacles). On the other hand, robust AUV control
around coral reefs is difficult because of their unstructured
dynamic nature. In the absence of GPS in the underwater
environment, localization errors are increasing, making any
prior knowledge of the environment coarse and inappropriate.
Nonetheless, the reference trajectory might not feasible in
real ocean environments due to the fact that the ocean is
a partially known environment even in the best case sce-
nario. When operating in such an uncertain environment,
the underwater vehicle has to be reactive and has the ability to
recalculate its path online in order to generate collision-free
paths, as more information about the surroundings becomes
available [27].

Fig. 1. Trajectory tracking in the uncertain and constrained workspace,
including obstacles where the knowledge of the operating workspace (e.g.,
the accurate obstacles’ positions) is constantly updated via the vehicle’s
onboard sensors. The reference and actual vehicle trajectories are depicted
with green dashed and blue lines, respectively.

Motivated by the aforementioned considerations, this arti-
cle presents a robust trajectory tracking control scheme for
underactuated AUVs operating in a constrained workspace,
including obstacles (see Fig. 1). In particular, a robust NMPC
scheme is presented for the underactuated AUVs (i.e., vehi-
cles actuated only in the surge, heave, and yaw). Various
constraints such as sparse obstacles, workspace boundaries,
sensing range capability, predefined upper bounds for the
velocity of the underwater robotic vehicle (requirements for
several underwater tasks, such as seabed inspection scenario
and mosaicking), and thruster saturation are considered dur-
ing the control design. The purpose of the controller is to
steer the underactuated AUV on a desired trajectory inside
a constrained and dynamic workspace. Since the knowledge
of the operating workspace is constantly updated online via
the vehicle’s onboard sensors, the robot recalculates its path
online and generates a collision-free trajectory tracking path
if the updated environmental changes (i.e., new detected
obstacles) are in conflict with the reference trajectory. In
particular, by considering a ball that covers the volume of
the system and the sensing range of the vehicle, obstacle
avoidance with any of the detected obstacles is guaranteed
by the online generation of a collision-free trajectory track-
ing path, despite the model dynamic uncertainties and the
presence of external disturbances representing ocean currents
and waves. The proposed feedback control law consists of
two parts: an online law that is the outcome of a finite
horizon optimal control problem (FHOCP) solved for the
nominal dynamics, and a state feedback law that is tuned
offline and guarantees that the real trajectories remain bounded
in a tube centered along the nominal trajectories for all times.
The volume of the tube depends on the upper bound of the
disturbances as well as bounds of derivatives of the dynamics.
The closed-loop system has analytically guaranteed stability
and convergence properties.

The rest of this article is organized as follows. Section II
provides the notation and the mathematical preliminaries.
The problem treated in this article in hand is formulated in
Section III. Section IV analyzes the proposed framework.
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In Section V, a simulation study is demonstrated through
figures and a video. Finally, in Section VI, conclusions and
future research directions are discussed.

II. NOTATION AND BACKGROUND

The sets of positive integers and real numbers are denoted
by N and R, respectively. R

n
≥0 and R

n
>0 are the sets of

real n vectors with all elements nonnegative and positive,
respectively. Given a set S, denote by |S| and Sn := S×· · ·×S
its cardinality and its n-fold Cartesian product. Given a vector
z ∈ R

n, define by �z�2 := (z�z)1/2, �z�∞ := maxi=1,...,n |zi |,
and �z�P := (z�P z)1/2 its Euclidean, infinite, and P-
weighted norm, respectively, with P ≥ 0. The notation λmin(P)
stands for the minimum absolute value of the real part of the
eigenvalues of P ∈ R

n×n; 0m×n ∈ R
m×n and In ∈ R

n×n stand
for the m × n matrix with all entries zeros and the identity
matrix, respectively. The notation diag{P1, . . . , Pn} stands for
the block diagonal matrix with the matrices P1, . . . , Pn in the
main diagonal. Moreover, B(c, r) := {x ∈ R

n : �x − c�2 ≤ r}
stands for a ball in R

n with center and radius c ∈ R
n , r > 0,

respectively. The boundary of a set A is denoted as ∂A and
is defined as ∂A = A\Å, where Å is the interior of set A.
Given sets S1, Z ⊆ R

n , and S2 ⊆ R
m and matrix P ∈

R
n×m , the Minkowski addition, the Pontryagin difference, and

the matrix-set multiplication are defined by S1⊕Z := {s1+ z :
s1 ∈ S1, z ∈ Z}, S1 
 Z := {s1 ∈ S1 : s1 + z ∈ S1,∀z ∈ Z},
and P ◦ S2 := {Ps, s ∈ S2}, respectively.

Definition 1 ([28]): Consider a dynamical system

ẋ = f (x, u, d), x ∈ X , u ∈ U, d ∈ D

with initial condition x(0) ∈ X and external disturbances d ∈
D. A set X  ⊆ X is a robust control invariant (RCI) set for the
system if there exists a feedback control law u := κ(x) ∈ U
such that for all x(0) ∈ X  and for all d ∈ D, it holds that
x(t) ∈ X  for all t ≥ 0, along every solution x(t) of the
closed-loop system.

Definition 2: A nonlinear system ẋ = f (x, u, d), x ∈
X , u ∈ U, d ∈ D, with initial condition x(0) ∈ X , is said
to be input-to-state stable (ISS) with respect to d ∈ D if there
exist functions β ∈ KL and γ ∈ K such that for any initial
condition x(0) ∈ X and for any input u(t) ∈ U , the solution
x(t) exists for all t ∈ R≥0 and satisfies

�x(t)� ≤ β(�x(0)�, t)+ γ
�

sup
0≤s≤t

�d(s)�
�
.

III. PROBLEM STATEMENT

In this section, the overall problem is formulated. Initially,
the mathematical model of the underactuated underwater vehi-
cle is presented.

A. Mathematical Modeling

The pose vector of the vehicle with respect to the inertial
frame I is denoted by ηtot = [ηT

1 ηT
2 ]T ∈ R

6, including
the position (i.e., η1 = [x y z]T ) and orientation (i.e.,
η2 = [φ θ ψ]T ) vectors. The vtot = [vT

1 vT
2 ]T ∈ R

6 is

Fig. 2. Underactuated unicycle-like underwater vehicle. Blue color indicates
the actuated degrees of freedom.

the velocity vector of the vehicle expressed in body fixed
frame V and includes the linear (i.e., v1 = [u v w]T ) and
angular (i.e., v2 = [p q r ]T ) velocity vectors (see Fig. 2).
In this work, we consider one of the most common types
of underactuated underwater vehicles, namely unicycle-like
vehicles (see Fig. 2). The considered unicycle-like vehicles
are equipped with a set of thrusters that are effective only in
surge, heave, and yaw motion (see Fig. 2), meaning that the
vehicle is underactuated along the sway axis.

Remark 1: The unicycle-like underactuated underwater
vehicles considered in this work are usually designed with
metacentric restoring forces in order to regulate roll and pitch
angles. Thus, the angles φ and θ and angular velocities p and
q are negligible, and we can consider them to be equal to
zero [29]. In addition, the vehicle is symmetric about the xz
plane and close to symmetric about the yz plane. Therefore,
we can safely assume that motions in heave, roll, and pitch
are decoupled [30].

Without loss of generality and based on the aforementioned
considerations, the dynamic equations of the considered under-
water robotic vehicle can be given as follows [30]:

ẋ = u cosψ − v sinψ (1a)

ẏ = u sinψ + v cosψ (1b)

ż = w (1c)

ψ̇ = r (1d)

u̇ = 1

m11

�
m22vr + Xuu + Xu|u||u|u + τX

�
(1e)

v̇ = 1

m22

�−m11ur + Yvv + Yv|v||v|v
�

(1f)

ẇ = 1

m33

�
(W − B)+ Zww + Zw|w||w|w + τZ

�
(1g)

ṙ = 1

m44

�
(m11 − m22)uv + Nrr + Nr |r ||r |r + τN

�
(1h)

where m11, m22, m33, and m44 are the terms of the inertia
matrix, including the added mass, W and B are the vehicle
weight and the buoyancy force, Xu , Xu|u|, Yv , Yv|v|, Zw , Zw|w|,
Nr , and Nr |r | are negative hydrodynamic damping coefficients,
and τX , τZ , and τN are the control inputs of the system and
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consist of body forces and torque generated by the thrusters
along the surge, heave, and yaw directions.

Remark 2: In this work, we consider one of the most
common types of underactuated underwater vehicles, namely
the unicycle-like vehicles (see Fig. 2). In particular,
the unicycle-like underactuated vehicles considered in this
class are actuated by forces τX and τZ along the longitudinal
(surge) and vertical (heave) axes, respectively, and a torque τN

about the vertical (yaw) axis (see Fig. 2). The aforementioned
forces τX and τZ and torque τN define the input control
variables of the corresponding dynamic system (1), which,
in this case, is unactuated in the sway degree of freedom (i.e.,
τY = 0).

The dynamic equations of (1) can be rewritten as

η̇ = J(η)v + g(η, v) (2a)

v̇ = M−1
�
τ+C(v, v)v +D(v)v+g

�
(2b)

v̇ = 1

m22

�−m11ur + Yvv + Yv|v||v|v
�

(2c)

where the following holds.

1) η = [x y z ψ]�∈ R
4 is the pose vector expressed in I.

2) v = [u, w, r ]� ∈ R
3 is the velocity vector of the

vehicle along actuated degrees of freedom, expressed in
the body-fixed frame V .

3) τ = [τX , τZ , τN ]� ∈ R
3 is the propulsion force/torque

vector (i.e., the body forces and torques generated by
the thrusters) applied on the vehicle and expressed in
body-fixed frame V .

4) g(η, v) = [−sψ, cψ, 0, 0]T v .
5) M = diag(m11,m33,m44) ∈ R

3×3 is the inertia matrix.
6)

C(v, v)=
⎡⎣ 0 0 m22v

0 0 0
(m11 − m22)v 0 0

⎤⎦
is the coriolis matrix.

7)

D(v)=
⎡⎣Xu + Xu|u||u| 0 0

0 Zw + Zw|w||w| 0
0 0 Nr + Nr |r ||r |

⎤⎦
is the drag matrix.

8) g = [0, (W − B), 0]T ∈ R
3 is the hydrostatic restoring

force vector.
9)

J(η) =

⎡⎢⎢⎣
cos(ψ) 0 0
sin(ψ) 0 0

0 1 0
0 0 1

⎤⎥⎥⎦ ∈ R
4×3

is the Jacobian matrix transforming the velocities from
the body-fixed (V) to the inertial (I) frame.

Notice that the robot moves under the influence of an
irrotational current that behaves as an external disturbance on
the system’s dynamic equation (2b). In particular, we set δY

and δ = [δX , δZ , δN ]� ∈ � ⊂ R
3 with � being a compact

set. In this vein, there exist upper bounds δ̄Y > 0 and δ̄ > 0
such that |δY | ≤ δ̄Y and ||δ|| ≤ δ̄, respectively. Furthermore,

it is assumed that vehicle’s dynamic parameters have been
identified via a proper identification scheme. However, some
degree of model uncertainty should be considered. In partic-
ular, we set γY as the model uncertainty regarding the sway
direction and γ = [γX , γZ , γN ]� ∈  ⊂ R

3 as the vector of
uncertainties with  being a compact set. In the same vein,
we assume that there exist positive upper bounds γ̄Y and γ̄ ≥ 0
such that |γY | ≤ γ̄Y and ||γ || ≤ γ̄ . Taking into consideration
the aforementioned disturbances and uncertainties, we can
model the perturbed system as follows:

η̇ = J(η)v + g(η, v) (3a)

v̇ = M−1�τ+C(v, v)v+D(v)v+g
�+ ξ (3b)

v̇ = 1

m22

�−m11ur + Yvv + Yv|v||v|v
�+ δY (3c)

where ξ = γ + δ ∈ � ⊂ R
3 in the vector that is the result

of adding uncertainties and external disturbances and � is a
compact set with � = � ⊕ . Since the sets � and  are
compact, we have that � is also compact, and

� := �
ξ(t) ∈ R

3 : ||ξ (t)||2 ≤ ξ̄


(4)

with ξ̄ � δ̄ + γ̄ .

B. Geometry of the Workspace

We consider that the underwater vehicle operates inside
a workspace W ⊂ R

3 with boundary ∂W and scattered
obstacles located within it. Without loss of the generality,
the robot and the obstacles are modeled by spheres (i.e.,
we adopt the spherical world representation [31]). Let B(η1, r̃)
be a closed ball that covers the whole vehicle volume (main
body and additional equipments). Moreover, let B(η1, R̄) with
R̄ > r̃ be a sensing area where the robot can perceive and
update its knowledge of the workspace (i.e., the obstacle
locations) using its onboard sensors. Furthermore, the M static
obstacles within the workspace are defined as closed balls
described by πm = B( pπm

, rπm ), m ∈ {1, . . . ,M}, where
pπm
∈ R

3 is the center and rπm > 0 is the radius of the
obstacle πm . In addition, based on the property of spherical
world [31], for each pair of obstacles m,m  with m �= m ,
we have ||πm − πm || > 2r̃ + rπm + rπ m , which intuitively
means that the obstacles m and m  are disjoint in such a way
that the entire volume of the vehicle can pass through the
free space between them. Therefore, there exists a feasible
trajectory η1(t) for the vehicle such that

B
�
η1(t), r̃

� ∩ �
B

�
pπm

, rπm

� ∪ ∂W = ∅
∀t ≥ 0, m ∈ {1, . . . ,M}. (5)

A graphical representation of the feasible trajectory is depicted
in Fig. 3.

C. Constraints

1) State Constraints: As already stated, the robot should
be able to avoid the newly detected obstacles that may have
been unknown to the off-line trajectory planner. Moreover, for
the needs of several common underwater tasks (e.g., seabed
inspection and mosaicking), the vehicle is required to move
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Fig. 3. Graphical representation of a feasible trajectory in the workspace.
The boundary of workspace ∂W is illustrated in cyan. The orange areas
indicate the obstacles within the workspace W . The blue line encircles the
area covered by the vehicle at times 0 and t with t > 0, respectively. The
feasible trajectory of the vehicle is depicted in green.

with relatively low speeds with upper bound denoted by v̄
and the velocity vector v̄ = [ū w̄ r̄ ]�, where (·̄) denotes
the corresponding upper bounds for each coefficient. These
requirements are captured by the state constraint sets H and
V , given by

η(t) ∈ H ⊂ R
4, and v(t) ∈ V ⊂ R

3 (6)

which can be defined as

V := �
v ∈ R

3 : |u| ≤ ū, |w| ≤ w̄, |r | ≤ r̄


(7)

with upper bound as V̄ = (ū + w̄ + r̄)(1/2), and

H := �
η ∈ R

4 : B�
η1, r̃

� ∩ �
B

�
pπm

, rπm

� ∪ ∂W = ∅
m ∈ {1, . . . ,M}}. (8)

2) Input Constraints: The actuation body forces and torques
are generated by the thrusters. Thus, we define the control
constraint set T as follows:

τ (t) = [τX , τZ , τN ]� ∈ T ⊆ R
3 (9)

which can be defined as

T := �
τ ∈ R

3 : |τX | ≤ τ̄X , |τZ | ≤ τ̄Z , |τN | ≤ τ̄N


(10)

with τ̄X , τ̄Z , τ̄N ∈ R≥0 are the corresponding upper bound for
each thrust directions.

D. Problem Statement

Let pd(t) = [xd(t), yd(t), zd (t)]T denote a smooth desired
trajectory with bounded time derivatives; thus, the problem of
this article can be stated as follows.

Problem 1 (Robust Tracking Control for an Autonomous
Underactuated Underwater Vehicle): Consider an underactu-
ated AUV described by (3) operating in a workspace W ⊂

R
3 with state and input constraints as well as disturbances

imposed by the sets H , V , and T as well as � as in (6), (9) and
(4), respectively. Consider also that the robot and the obstacles
are all modeled according to the spherical world representa-
tion,1 and the knowledge of the operating workspace W (e.g.,
obstacles positions) is constantly updated via the vehicle’s
onboard sensors inside a sensing region defined by B(η1, R̄).
Given a desired trajectory pd(t) = [xd(t), yd(t), zd(t)]T ,
design a feedback control law τ = κ(η, v) ∈ T such that
the desired trajectory pd(t) is tracked while guaranteeing the
following specifications:

1) capability to be flexible regarding environmental
changes (i.e., avoiding new detected obstacles which
may coincide with desired trajectory, and so on);

2) respect operational limitations in the form of state (e.g.,
velocity bounds) and input (thrust saturation) constraints

η(t) ∈ H, v(t) ∈ V , τ (t) ∈ T

3) respect capability sensing range of the system;
4) predefined robustness with respect to the external dis-

turbances and model uncertainties.

IV. METHODOLOGY

In this section, we present, in detail, the methodology
proposed in order to formulate the solution of Problem 1.
In particular, an NMPC framework [32]–[35] is utilized, and
a relevant robust NMPC analysis, the so-called tube-based
approach, is provided here for the trajectory tracking problem
for underactuated systems in the presence of disturbances.
The proposed feedback control law consists of two parts: an
online control law, which is the outcome of FHOCP for the
nominal system dynamics, and a state feedback law, which
guarantees that the real system trajectories always lie within
a tube centered along the nominal trajectories. First, we begin
by defining the error states and the corresponding transformed
constraints.

A. Error Definitions

Given the desired trajectory pd(t) = [xd(t), yd(t), zd(t)]T ,
let us define the position errors

ex(t)= x−xd(t), ey(t)= y−yd(t), ez(t)= z−zd(t) (11)

the projected on the horizontal plane distance error

ed(t) =
�

e2
x(t)+ e2

y(t) (12)

as well as the projected on the horizontal plane orientation
error

eo(t) = ey(t)

ed(t)
cψ(t) − ex(t)

ed(t)
sψ(t) = sψe (13)

where s� = sin(�), c� = cos(�), ψ is the yaw angle, and ψe

is the angle measured from the normalized error vector

ed =
�

ex

ed
,

ey

ed
, 0

��
1As described in Section III-B.
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Fig. 4. Graphical illustration of the error definition.

on the horizontal plane to the normalized projection of the
longitudinal axis of the vehicle on the horizontal plane, defined
by the vector [cψ, sψ, 0]� (see Fig. 4). Now, differentiating the
aforementioned errors of (11)–(13), employing (2), and using
the

cψe =
ex

ed
cψ + ey

ed
sψ

cψ+ψe = cψcψe − sψ sψe =
ex

ed

sψ+ψe = sψcψe + cψ sψe =
ey

ed

we arrive at

ėd = cψe u − ẋdcψ+ψe − ẏdsψ+ψe+sψev (14)

ėz = ż − żd ⇒ ėz = w − żd (15)

ėo = − sψe cψe

ed
u − cψer+

ẋd

ed

�
sψe cψ+ψe + sψ

�
+ ẏd

ed

�
sψe sψ+ψe − cψ

�+c2
ψe

ed
v. (16)

By defining the error vector e = [ed, ez, eo]�, the aforemen-
tioned formulas can be written in matrix form as

ė = J
�
e, pd

�
v + ζ �e, ṗd

�+ξ(e, v) (17)

where

J
�
e, pd

� :=
⎡⎢⎣ cψe 0 0

0 1 0

− sψe cψe

ed
0 −cψe

⎤⎥⎦, ξ(e, v) :=

⎡⎢⎢⎣
sψev

0
c2
ψe

ed
v

⎤⎥⎥⎦

ζ
�
e, ṗd

� :=
⎡⎢⎣ −ẋdcψ−ψe − ẏdsψ−ψe

−żd
ẋd

ed

�
sψe cψ+ψe + sψ

�+ ẏd

ed

�
sψe sψ+ψe − cψ

�
⎤⎥⎦

which are the transformed kinematic error equations of the
underwater vehicle system. It should be noted that the tracking
control problem is solved if the projected on the horizontal
plane distance error ed , the vertical error ez , and the orientation
error eo converge to zero. Moreover, it should be noticed that

the orientation error eo as well as the Jacobian matrix J (e, pd)
are well-defined when the following holds:

ed(t) > 0 and − π
2
< ψe <

π

2
∀t ≥ 0. (18)

Thus, a feasible error configuration imposed to the system is
captured by the set

E :=
�
η∈H :

�
e2

x+e2
y ≥�d , − π

2
+�r ≤ψe≤ π

2
−�r

�
(19)

where �d and �o are arbitrarily small positive constants that
guarantee avoidance of the aforementioned singularity issues.

Remark 3: It should be noted that in J (e, pd), the singu-
larity appears when det(J (e, pd)) = −| cos(ψe)|2 = 0 �⇒
|ψe| = (π/2). On the other hand, we have that the angle ψe

is the pointing angle of the vehicle to the target trajectory.
Therefore, a configuration where |ψe| > π/2 will not be
singular, but the vehicle, in this case, will face the desired
trajectory from the opposite side. In this respect, we select and
impose the feasible error configuration set in (19), in order to
guarantee that: 1) the system is in a nonsingular configuration
and 2) the vehicle is facing directly the target trajectory.

Remark 4: It should be noted that the constraint set E in
(19) guarantees that J(e, pd) is nonsingular. Thus, there exists
strictly positive constants J and J̄ such that, respectively

λmin

�
J (·)+ J�(·)

2

�
≥ J > 0 and �J (·)� ≤ J̄ .

Now, in view of (17) and considering the perturbed dynamic
equations of (3a)–(3c), the uncertain transformed kinemat-
ics/dynamics of the systems can be given as follows:

ė = J
�
e, pd

�
v + ζ �e, ṗd

�+ξ(e, v) (20a)

v̇ = M−1
�
τ+C(v, v)v+D(v)v+g

�+ ξ (20b)

v̇ = 1

m22

�−m11ur + Yvv + Yv|v||v|v
�+ δY . (20c)

The corresponding nominal dynamics (i.e., ξ = 0) are now
given by

˙̂e = J
�
ê, pd

�
v̂ + ζ �ê, ṗd

�+ξ(ê, v̂) (21a)
˙̂v= M−1�τ̂+C(v̂, v̂)v̂+D(v̂)v̂+g

�
(21b)

˙̂v = 1

m22

�−m11ûr̂ + Yv v̂ + Yv|v||v̂ |v̂
�
. (21c)

It should be noticed that we use the (·̂) notation for the nominal
state in order to account for the mismatch between the real
state and the nominal one that will be used in the following
analysis.

B. State Feedback Design

Consider the feedback law

τ = τ̂ (ê, v̂)+ κ(e, ê, v, v̂) (22)

which consists of a nominal control action τ̂ (ê, v̂) ∈ T and a
state feedback law κ : R

3 × R
3 → T . The control action

τ̂ (ê, v̂) will be the outcome of an FHOCP solved for the
nominal dynamics (21), while the state feedback law κ(·) is
designed in order to guarantee that the real trajectories e(t)
and v(t) [i.e., the solution of (20)] always remain inside a
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Fig. 5. Tube centered along the trajectory ê(t) (depicted by the blue line) with
radius �ρe . Under the proposed control law, the real trajectory e(t) (depicted
with red line) lies inside the tube for all times, i.e., �ρe(t)� ≤ �ρe ∀t ∈ R≥0.

bounded tube centered along the nominal trajectories ê(t) and
v̂(t) i.e., the solution of (21). Now, let us define by ρe(t) and
ρv (t) the discrepancy between the real errors and the nominal
ones, given as

ρe(t) := e(t)− ê(t) (23a)

ρv (t) := v(t)− v̂(t) (23b)

with ρe(0) = e(0) − ê(0) = 0 and ρv (0) = e(0) − ê(0) = 0,
respectively. In view of (23a), the dynamics of ρe(t) are given
as

ρ̇e = ė− ˙̂e
= J

�
e, pd

�
v − J

�
ê, pd

�
v̂ + ζ �e, ṗd

�− ζ �ê, ṗd

�
+ ξ(e, v) − ξ(ê, v̂). (24)

By adding and subtracting the term J (e, pd)v̂ and by defining
the function

he(e, v̂) := J
�
e, pd

�
v̂

for which it also holds that:

he(ê, v̂) := J
�
ê, pd

�
v̂

(24) becomes

ρ̇e = he(e, v̂)−he(ê, v̂)+ J
�
e, pd

�
ρv+ζ

�
e, ṗd

�−ζ �ê, ṗd

�
+ ξ(e, v) − ξ(ê, v̂). (25)

Note that for the continuously differentiable functions he(·),
ζ(·) and ξ(·), the following holds:

�he(e, v̂)− he(ê, v̂)� ≤ L1�e− ê� = L1�ρe� (26a)��ζ �e, ṗd

�− ζ �ê, ṗd

��� ≤ L2�e − ê� = L2�ρe� (26b)

�ξ(e, v) − ξ(ê, v̂)� ≤ L3�e− ê� + L4�v − v̂�
= L3�ρe� + L4�v − v̂� (26c)

where L1, L2, L3, L4 > 0 stand for their Lipschitz constants.
The time derivative of the signal ρv in view of (23b) is

given as

ρ̇v = v̇ − ˙̂v = M−1(τ − τ̂ ) + ϕ(v, v)−ϕ(v̂, v̂)+ ξ (27)

where for the continuously differentiable function

ϕ(v, v) := M−1
�
C(v, v)v+D(v)v+g

�
ϕ(v̂, v̂) := M−1

�
C(v̂, v̂)v̂+D(v, v̂)v̂+g

�

it holds that

�ϕ(v, v)− ϕ(v̂, v̂)� ≤ L5�v − v̂� + L6�v − v̂�
= L5�ρv� + L6�v − v̂�. (28)

It will be proven, thereafter, that for the unactuated velocities
v and v̂, it holds that

�v − v̂� ≤ v̄ + ˆ̄v (29)

where v̄ and ˆ̄v to be defined in Section IV-C. Now, based
on the aforementioned analysis, the following Lemma can be
stated.

Lemma 1: The state feedback law

κ(e, ê, v, v̂) := −kσ(e− ê)− σ(v − v̂) (30)

where the gains are chosen such that

k := L+k+L4
�
v̄ + ˆ̄v

�
λmin(J )

, k > 0, � >
α1

4k
, σ >

α1�+α2

λmin
�
M−1

�
(31a)

α1 := L+ kL5+kL6
�
v̄ + ˆ̄v

�
, α2 := L5+L6

�
v̄ + ˆ̄v

�+ J̄

(31b)

renders the sets

Z1 =
�
ρe : �ρe� ≤ �ρe := ξ̄

min{ς1, ς2}
�

(32a)

Z2 =
�
ρv : �ρv� ≤ �ρv := (1+ k)ξ̄

min{ς1, ς2}
�
. (32b)

RCI sets for the error dynamics (25) and (27), where the
constants ς1 and ς2 are given by

ς1 :=k− α1

4�
>0, ς2 :=σλmin

�
M−1

�−α1�−α2>0. (33)

Proof: A baskstepping control design technique will be
adopted. The signal ρe in (25) can be seen as the virtual control
input to be designed in ordered to stabilize the system (25).
Consider the positive definite function �1(ρe) = (1/2)�ρe�2.
The time derivative of �1 along the solutions of system (25)
is given by

�̇1
�
ρe

� = ρ�e
�
h(e, v)−h(ê, v̂)

�+ρ�e
�
ζ
�
e, ṗd

�−ζ �ê, ṗd

��
+ ρ�e J

�
e, pd

�
ρv+ρ�e

�
ξ(e, v) − ξ(ê, v̂)�

≤ L1�ρe�2 + L2�ρe�2 + ρ�e J
�
e, pd

�
ρv

+L3�ρe�2 + L4
�
v̄ + ˆ̄v

�
= L�ρe�2 + ρ�e J

�
e, pd

�
ρv+L4

�
v̄ + ˆ̄v

�
where L := L1 + L2 + L3. By designing the vir-
tual control input as ρv = −kρe, where k :=
(L+ k+L4(v̄ + ˆ̄v))/(λmin(J )), k > 0, it holds that

�̇1
�
ρe

� ≤ L�ρe�2 − kρ�e J
�
e, pd

�
ρe+L4

�
v̄ + ˆ̄v

�
≤ L�ρe�2 − kλmin(J )�ρe�2+L4

�
v̄ + ˆ̄v

�
= −[kλmin(J )− L]�ρe�2+L4

�
v̄ + ˆ̄v

�
= −k�ρe�2+L4

�
v̄ + ˆ̄v

�
.

By taking the aforementioned virtual control design into
consideration, define the backstepping auxiliary vector by

� := ρv + kρe, n := �
ρ�e ,�

���
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and consider the function �(n) := (1/2)�n�2. Then, the time
derivative of �(n) is given by

�̇(n) = ρ�e ρ̇e + ���̇
= ρ�e ρ̇e + ��

�
ρ̇v + kρ̇e

�
= �

ρe + k�
��

ρ̇e + ��
�
ϕ(v, v)− ϕ(v̂, v̂ )�

+ ��M−1(τ − τ̂ )+ ��ξ . (34)

By using the fact that

xy ≤ 1

�
x2 +� y2

for every x , y ∈ R, � > 0, we get

�ρe���� ≤
1

4�
�ρe�2 +����2.

By using the latter, (34) becomes

�̇(n) ≤ −
�

k − α1

4�

�
�ρe�2 + (α1� + α2)���2

+ ��M−1(τ − τ̂ )+ �n�ξ̄ (35)

with α1 and α2 given in (31a). By designing

τ − τ̂ = −σ� = −kσ(e− ê)− σ(v − v̂)

which is compatible with (30), we get

�̇(n) ≤ −
�

k − α1

4�

�
�ρe�2 + (α1� + α2)���2

− σ��M−1� + �n�ξ̄
≤ −

�
k − α1

4�

�
�ρe�2 + (α1� + α2)���2

− σλmin
�
M−1

����2 + �n�ξ̄
= −

�
k− α1

4�

�
�ρe�2−�

σλmin
�
M−1�−α1� − α2

����2

+�n�ξ̄
= −ς1�ρe�2 − ς2���2 + �n�ξ̄
≤ −min{ς1, ς2}�n�2 + �n�ξ̄
≤ −�n��min{ς1, ς2}�n� − ξ̄

�
(36)

with ς1, ς2 as given in (33). Thus, �(n) < 0, when

�n� > �ξ
min{ς1, ς2} .

Taking the latter into consideration and the fact that n(0) = 0,
it holds that

�n(t)� ≤ �ξ
min{ς1, ς2} ∀t ≥ 0.

Moreover, the following inequalities hold:

�ρe� ≤ �n� ⇒ �ρe(t)� ≤
ξ̄

min{ς1, ς2} ∀t ≥ 0����ρv� − k�ρe�
��� ≤ �ρv + kρe� = ��� ≤ �n�

⇒ �ρv (t)� ≤
(1+ k)ξ̄

min{ς1, ς2} ∀t ≥ 0

which concludes the proof.
A graphical illustration of the proposed tube-based control

strategy is given in Fig. 5. Under the proposed control scheme
(22), the real trajectory e(t) lies inside the tube, which is
centered along the nominal trajectory ê with radius �ρe for all
times, i.e., �ρe(t)� ≤ �ρe ∀t ∈ R≥0.

C. Bounds on the Unactuated Velocity v

In the sequel, we will prove the boundedness of the unac-
tuated velocity v along the sway direction. Let us define
the positive definite and radially unbounded function Vv =
(1/2)m22v

2, where m22 denotes the vehicle’s mass/added
mass of inertia of the sway degree of freedom [see (1f)].
Differentiating Vv with respect to time and substituting (1f),
we obtain

V̇v = m22vv̇

= −m11uvr + Yvv
2 + Yv|v|v2|v| + vm22δY

which after algebraic manipulations, and using the facts
Yv ,Yv|v| < 0 and |δY | ≤ δ̄Y , leads to

V̇v ≤ Yv|v||v|3 + Yv |v|2 + m11ūr̄ |v| + m22δ̄Y |v|.
Therefore, we conclude that V̇v is negative when

|v| > √a+ b+ c

where a � ((Yv )/(2Yv|v|))2, b � (m11ūr̄ + m22δ̄Y )/(−Yv|v|),
and c � −(Yv)/(2Yv|v|). Consequently, we have

|v(t)| ≤ v̄ := max

�
|v(0)|,

√
a+ b− c

m22

�
∀t ≥ 0 (37)

which intuitively means that for any underactauted underwater
vehicle and for any bounded velocities |u| ≤ ū, |w| ≤ w̄
and |r | ≤ r̄ , the velocity v in the unactuated sway direction
remains bounded by an upper bound that depends on: 1) the
upper bounds ū, w̄, and r̄ ; 2) the parameters of the dynamic
model (1); and 3) the magnitude of the external disturbances.
In a similar way, by defining a positive definite and radially
unbounded function Vv̂ = (1/2)m22v̂

2, we can calculate an
upper bound for the nominal velocity v̂ given as

|v̂(t)| ≤ ˆ̄v := max

�
|v̂(0)|,

�
a+ b̂− c

m22

�
∀t (38)

where b̂ � (m11ūr̄/− Yv|v|).

D. Online Optimal Control

As mentioned earlier, the control action τ̂ (ê, v̂) in (22) will
be the outcome of an FHOCP solved for the nominal dynamics
(21). In this respect, consider a sequence of sampling times
{tk}, k ∈ N, with a constant sampling period 0 < t < N , where
N is a prediction horizon such that tk+1 := tk + t ∀k ∈ N.
At each sampling time tk , an FHOCP is solved as follows:

min
τ̂(·)

�
�ê(tk + N)�2

P+
� tk+N

tk

��ê(s)�2
Q+�τ̂ (s)�2

R

�
ds

�
(39a)

subject to: ˙̂χ(s) = g(χ(s), τ̂ (s)), χ̂(tk) = χ(tk) (39b)

χ̂(s)∈�E × �V, τ̂ (s) ∈ �T ∀s ∈ [tk, tk+N] (39c)

χ̂(tk + N) ∈ F (39d)

where

χ := �
e�, v�, v

�� ∈ R
6

g(χ , τ ) :=
⎡⎢⎣ J

�
ê, pd

�
v̂ + ζ �ê, ṗd

�+ξ(ê, v̂ )
M−1(τ̂+C(v̂, v̂)v̂−D(v̂)v̂−g)
1

m22

�−m11ûr̂ + Yv v̂ + Yv|v||v̂|v̂
�
⎤⎥⎦
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TABLE I

VEHICLE DYNAMIC PARAMETER SET

and Q, P ∈ R
6×6 and R ∈ R

3×3 are positive definite gain
matrices. Moreover, �E , �V, and F are designing sets that are
defined in order to guarantee that while the solution of the
FHOCP (39a)–(39d) is derived for the nominal dynamics (21),
the real trajectory χ(t) and control inputs τ (t) satisfy the
corresponding state and input constraints. More specifically,
the following modifications are performed:�E := E 
 Z1, �V := V 
Z2, �T := T 
 �

K ◦ �Z�
where

K := diag{−kσ I3,−σ I3}, �Z := Z1 ×Z2.

This intuitively means that the sets E and V are tightened
accordingly in order to guarantee that while the nominal states
ê and v̂ and the nominal control input τ̂ are calculated, the cor-
responding real states e and v and real control input τ satisfy
the state and input constraints E , V , and T , respectively.2

Define the terminal set by

F := �
χ̂ ∈ �E : �χ̂�P ≤ �̄


, �̄ > 0 (40)

which is employed here in order to enforce the stability of the
system [33].

Newly Detected Obstacles: As mentioned earlier, the obsta-
cles within the workspace may be detected online by the vehi-
cle’s onboard sensors (e.g., multibeam imaging or side scan
sonar). In such a case, it should be assured that the solution
of the FHOCP corresponds to the region that is accessible by
the sensing capabilities of the vehicle. This intuitively means
that at the time of sampling tk when solving the FHOCP, any
new obstacles have been taken into account by the controller
even for the scenario with maximum running speed (i.e., a case
when vehicle moves with its maximum speed under maximum
disturbances, which is tangent to robot’s moving direction.).
Thus, recalling that R̄ denotes the sensing range of the system,
as already stated in Section III-B, the prediction horizon is set
as follows:

N ≤ R̄

max{ū, w̄, r̄} +�ξ t (41)

where ū, w̄, and r̄ are defined in (7).

2This constitutes a standard constraints set modification technique adopted
in tube-based NMPC frameworks. For more details, see [36].

Fig. 6. Evolution of the proposed methodology in two separate scenarios.
(a) Obstacle-free scenario and (b) constrained workspace scenario, including
obstacles. In obstacle-free scenario, an inspection task along a pipeline
structure was considered, while, in the constrained scenario, the tracking
control problem was considered in a workspace, including two obstacles. The
trace of the vehicle and the desired trajectory are depicted by blue and green
lines, respectively. The desired trajectory coincides with obstacles positions.
The obstacles are detected and considered to the controller when they are
within the sensing range R̄. The robot has been left the desired trajectory
when it is needed in order to avoid the obstacles.

Fig. 7. Obstacle-free scenario: the 3-D evolution of the vehicle and desired
trajectory.

Remark 5: It should be noticed that in a real scenario,
AUVs use sonar sensors to obtain knowledge about the
environment. The detection range of these sonar sensors (i.e.,
R̄) depends on many factors, including the frequency. Low-
frequency sonars can detect objects at very long distance,
depending on the sound propagation environment. Medium
frequency sonars (typically operating between 7.5 and up
to 30 kHz) can detect an object at a multiple nautical
miles. On the other hand, high-frequency sonars (>100 kHz)

Authorized licensed use limited to: Ericsson. Downloaded on July 24,2020 at 20:33:17 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING

Algorithm 1 Implementation of Feedback Control Laws τ (t)
Step 1: At time tk , the current state of the robot (i.e.,
η(tk), v(tk)) is measured, the errors ed(tk), ez(tk) and eo(tk)
of (11)-(13) are designed, and e(tk) = ê(tk) and v(tk) =
v̂(tk) are set.
Step 2: Based on (e(tk), ê(tk)) and (v(tk), v̂(tk)) solve
FHOCP (39a)-(39d) to obtain the nominal control action
τ̂ (tk) and the actual control action τ (tk) = τ̂ (tk) +
κi(e(tk), ê(tk), v(tk), v̂(tk)).
Step 3: Apply the control τ (tk) to the system, during
sampling interval [tk, tk+1), where tk+1 = tk + t.
Step 4: Measure the state of the system at the next time
instant tk+1, and set tk ← tk+1; Go to Step 1.

typically used for underwater inspection can detect smaller
objects at a few hundreds of meters (i.e., >100 m). Thus,
in view of (7), in a real scenario, the predefined upper bound of
the vehicle velocity can be tuned accordingly to the capability
sensing range R̃ of the available sonar system (i.e., by selecting
lower values for the velocity constraints in (7), with respect
to the original given upper bounds) in order to get a valuable
prediction horizon enough for solving the FHOCP (39a)–
(39d).
The pseudocode description of the proposed real-time control
scheme is given in Algorithm 1. Now, we are ready to state
the main result of this work.

Theorem 1: Suppose that, at time t = 0, the FHOCP [see
(39a)–(39d)] is feasible. Then, the proposed feedback control
law [see (22) and (30)] renders the closed-loop system ISS
with respect to the disturbances, for every initial condition
χ̂(0) ∈ E .

Proof: The proof of the theorem follows similar arguments
presented in our previous work [37]. Due to the fact that only
the state of the nominal system is used, while the FHOCP
(39a)–(39d) is solved, the online optimization does not depend
on the disturbances. The proof of feasibility, follows same
arguments as in [33] and [37],3 which leads to

χ(tk+1 + s; τ̂ (·),χ(tk+1)) ∈ E × V ∀s ∈ [0, N].

By taking the aforementioned into consideration, the feasibility
of a solution to the optimization problem at time tk implies
feasibility at all times tn+1 with n > k. Thus, since, at time
t = 0, a solution is assumed to be feasible, a solution to the
optimal control problem is feasible for all t ∈ R≥0. Regarding
the convergence analysis, due to the fact that the sets Z1 and
Z2 are RPI sets, it holds that

�ρe(t)� ≤ �ρe ∀t ≥ 0 (42)

�ρv (t)� ≤ �ρv ∀t ≥ 0 (43)

where

�ρe := ξ̄

min{ς1, ς2} , �ρv := (1+ k)ξ̄

min{ς1, ς2} .

3The analytical proof of feasibility is outside the scope of this work and
has been omitted.

Fig. 8. Obstacle-free scenario: the evolution of the transformed errors.

Since only the nominal system dynamics (21) are used for
the online computation of the control actions τ̂ (s) ∈ �T and
s ∈ [tk, tk + N] through the FHOCP (39a)–(39d), by invoking
nominal NMPC stability results found on [33], it can be proven
that the NMPC control law τ̂ renders the closed-loop trajec-
tories of the nominal system (21) asymptotically ultimated
bounded in the sets F [38]. Then, from [28, Lemma 4.5,
p. 150], there exist class KL functions βe and βv such that

�ê(t)� ≤ βe(�ê(0)�, t) ∀t ∈ R≥0 (44)

�v̂(t)� ≤ βv(�v̂(0)�, t) ∀t ∈ R≥0. (45)

By combining (23) and (42)–(45), we get

�e(t)� ≤ βe(�ê(0)�, t) + �ρe ∀t ∈ R≥0

�v(t)� ≤ βv(�v̂(0)�, t) + �ρv ∀t ∈ R≥0.

Thus, we have shown that the proposed control law [see (22)
and (30)] renders the closed-loop system ISS with reference to
the disturbances ξ (t) ∈ �, for every initial condition x(0) ∈ X
and v(0) ∈ V , which leads to the conclusion of the proof.

Remark 6: Regarding the tube’s design parameters,
by observing (31)–(33), the parameters J , λmin(M−1), and
λmin(J ) are initially given. Then, according to the given
dynamics and state constraints, the Lipschitz constants L1,
. . . , L6 are computed. Then, we tune the parameter gain
k > 0, and subsequently, we tune the remaining three control
gains k, � , and σ such that the inequalities in (31a) are
satisfied.
In Fig. 10, the vehicle velocities are presented, and respective
constraints are satisfied. Finally, in Fig. 11, the vehicle’s
thruster inputs are shown. As it can be seen, the input
constraints are also satisfied.

V. SIMULATION RESULTS

Real-time simulations have been performed to demonstrate
the efficiency of the proposed approach. The simulation envi-
ronment was designed based on UwSim dynamic simulator
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Fig. 9. Obstacle-free scenario: the evolution of the real errors.

Fig. 10. Obstacle-free scenario: the evolution of the vehicle velocities during
the task operation.

[39], a realistic simulation environment developed in the robot
operating system (ROS) [40] framework with 1-ms time step,
which is common in a real-time operation with an underwater
robotic system. The constrained NMPC employed in this work
is implemented using the NLopt Optimization library [41].

We conducted an underwater inspection task under external
disturbances representing ocean currents and waves. More
specifically, two separate scenarios have been considered:
1) obstacle free and 2) constrained workspace, including
obstacles. In particular, obstacle-free scenario consists of a
pipeline inspection task where the tracking control problem
for an underactuated AUV was considered in along a pipeline
structure, while, in the constrained scenario, the tracking
control problem was considered in a workspace, including two
obstacles, where their locations in the xy plane are given by

Fig. 11. Obstacle-free scenario: the control input signals during the task
operation.

Fig. 12. Constrained scenario: the evolution of the vehicle and desired
trajectory in the horizontal plane.

p1 = [−5, 5]� and p2 = [7.8, − 4]�, respectively (see
Fig. 6).

In both scenarios, we considered a unicycle-like underactu-
ated AUV where its dynamic parameters are given in Table I.
The capability sensing range and the horizon of the FHOCP
are considered as R̄ = 3 and N = 10 ∗ t = 1.0 s, respectively.
Moreover, the predefined upper bound of the vehicle velocities
in (7) is defined as ū = 0.8 (m/s), v̄ = 0.04 (m/s),
w̄ = 0.6 (m/s), and r̄ = 0.6 (rad/s). Furthermore, each of the
three control inputs must obey the following input constraint:
τ̄X = 140 N, τ̄Z = 100 N, and τ̄N = 60 Nm. The control
design parameters were chosen as k = 1.0, � = 4.0, and
k = 5.0. In both scenarios, the vehicle initially was at rest and
was request to track a desired trajectory within the workspace.
In addition, in the subsequent simulation study, the dynamics
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Fig. 13. Constrained scenario: the evolution of the transformed errors.

Fig. 14. Constrained scenario: the evolution of the real errors.

of the considered AUV were affected by external disturbances
in the form of slowly time varying sea currents acting along
X-, Y -, Z -, and N-axes of the vehicle frame modeled by
the corresponding dynamics δX = 0.2 sin(2(π/15)t) (m/s),
δY = 0.2 sin(2(π/15)t) (m/s) δZ = 0.2 cos(2(π/15)t) (m/s),
and δN = 0.2 sin(2(π/15)t) (m/s) (i.e., we set δ̄ = 0.6 and
δ̄Y = 0.2). Furthermore, we considered 20% uncertainties on
the AUV dynamic parameters (i.e., we set γ̄ = 0.2).

A. Obstacle-Free Scenario

The vehicle initially was at rest from the location η(0) =
[−15, − 12, 10, 0] and was requested to track a trajectory
along a pipeline structure. The desired trajectory involving
line and curved segments was defined by pd(t) = [−10 +
0.015 ∗ π t, 2.5 sin(0.015π t), 6 cos(0.015π t)]�. The results
are given in Figs. 7–11, respectively. The trajectory of the

Fig. 15. Constrained scenario: the evolution of the vehicle velocities during
the task operation.

Fig. 16. Constrained scenario: the control input signals during the task
operation.

system within the workspace is depicted in Fig. 6 and in 3-D
space in Fig. 7, respectively. It can be seen that the vehicle
performs successfully the trajectory tracking task along the
pipeline structure. The evolution of the transformed and real
error coordinates is shown in Figs. 8 and 9, respectively. It can
be seen that the real errors remain close to zero, and the
constraint ed(t) ≥ �, � = 0.1 of (19) remain satisfied during
the task operation.

B. Constrained Scenario

The vehicle initially was at rest from the location η(0) =
[−10, − 8, 9, 0] and was request to track a trajectory
along the pipeline structure. The desired trajectory involving
line and curved segments was defined by pd(t) = [−15 +
0.1 t, 12 sin((π/120)t), 8]�. Notice that the desired trajectory
that is required to be tracked by the AUV coincides with
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obstacles positions. The obstacles are modeled according to
the spherical world representations as consecutive spheres (i.e.,
cylinders) with radius rπi = 0.7 m, i = {1, . . .2}. The radius
of the sphere B(η1, r̃) that covers all the vehicle volume (i.e.,
main body and additional equipment) is defined as r̃ = 0.4.
However, for the clarity of presentation, we depict it as a safe
zone around the obstacles where the vehicle center η1 (denoted
by blue line in Fig. 12) should not violate it.

The capability sensing range and the horizon of the FHOCP
are considered as R̄ = 3 and N = 10 ∗ t = 1.0 s, respectively,
satisfying the condition (41). Notice that the obstacles are
detected and considered by the controller when they are within
the sensing range of the robot. Finally, the parameters �d and
�r defined in (19) are set to �d = 0.1 and �r = 0.1.

The simulation scenario has been conducted in such a
way that the robot is required to track the desired trajectory,
which coincides two times with obstacles. The results are
given in Figs. 12–16. The trajectory of the system within
the workspace is depicted in Fig. 6 and along the horizontal
plane in Fig. 12. It can be seen that the vehicle performs,
successfully, the trajectory tracking while safely avoids the
obstacles within the workspace. We observe that the robot has
been left the desired trajectory when it was needed in order to
avoid the obstacles. The evolution of the transformed and real
error coordinates is shown in Figs. 13 and 14, respectively.
It can be seen that the real errors remain close to zero, and
the constraints ed(t) ≥ �, � = 0.1 of (19) remain satisfied
during the task operation. In Fig. 15, the vehicle velocities are
presented, and the respective constraints are satisfied. Finally,
in Fig. 16, the vehicle’s thruster inputs are shown. As can be
seen, the input constraints are also satisfied.

Video: A video demonstrating the simulation scenar-
ios of this section can be found in the following link:
https://youtu.be/v-rWqNsCfY0

VI. CONCLUSION

This article presents a robust trajectory tracking control for
underactuated AUVs operating in a constrained workspace,
including obstacles. The purpose of the controller is to steer
the underactuated AUV on a desired trajectory inside a con-
strained and dynamic workspace. The workspace knowledge
(i.e., obstacles’ locations) is constantly updated online via the
vehicle’s sensors. Obstacle avoidance with any of the detected
obstacles is guaranteed, despite the presence of external dis-
turbances. Moreover, various constraints such as obstacles,
workspace boundaries, and predefined upper bound of the
vehicle velocity (requirements for various underwater tasks,
such as seabed inspection and mosaicking) are considered
during the control design. The proposed feedback control law
consists of two parts: 1) an FHOCP and 2) a state feedback law
that is tuned off-line and guarantees that the real trajectories
remain inside a tube centered along the nominal trajectories.
The closed-loop system has analytically guaranteed stability
and convergence properties. Future research efforts will be
devoted toward extending the proposed methodology for mul-
tiple AUVs operating in a dynamic environment, including not
only static but also moving obstacles.
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