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Abstract

Cooperative planning control is an active topic of research, with many practical
applications including multi-robot systems, transportation, multi-point surveillance
and biological systems. The contributions of this thesis lie in the scope of three topics:
formation control, time-constrained cooperative planning control and probabilistic
control synthesis, all of them in the framework of multi-agent systems.

In the first part of the thesis, given a team of rigid-bodies, we propose decentral-
ized control protocols such that desired position and orientation-based formation
between neighboring agents is achieved. Inter-agent collisions and collisions between
agents and static obstacles of the workspace are guaranteed to be avoided by the
proposed control scheme. Furthermore, the connectivity between the agents that
are initially connected is preserved. In the second part of the thesis, we consider
a team of agents, modeled by coupled single-integrator dynamics. Each agent is
assigned with individual high-level tasks, given in Metric Interval Temporal Logic
(MITL). By abstracting the motion of each agent into Transition Systems (TS), we
propose decentralized control methodologies that guarantee the satisfaction of the
desired tasks of each agent. In the final part, a coupled multi-agent system under
the presence of uncertainties and model errors is considered. Each agent is modeled
by a Markov Decision Process (MDP) and is assigned with a high-level task given
in Probabilistic Computational Tree Logic (PCTL). The goal is to design control
policies such that each agent is performing a desired task. By clustering the agents
into dependency clusters, we propose control algorithms that guarantee that the
desired specifications are fulfilled. Numerical simulations conducted in MATLAB
verify the claimed results.





Sammanfattning

Kooperativ planering och reglering är ett aktivt forskningsfält, med många
lovande praktiska tillämpningar, t.ex; system med flera robotar som m̊aste samarbeta,
transport- och logistikproblem, distribuerad övervakning samt diverse biologiska
system. Den här avhandlingen syftar att behandla följande ämnen: reglering för
formationpositionering, kooperativ planering under tids-bivillkor, samt probabilistisk
reglersyntes, allt under det gemensamma taket av fler-agents system.

I den första delen av avhandlingen föresl̊as decentraliserade reglerprotokoll, för
system med agenter som modelleras enligt stelkroppsdynamik, som garanterar att
önskade positions- och orientationsangivelser mellan närliggande agenter uppfylls.
Reglerprotokollet garanterar att kollisioner mellan agenter, samt mellan agenter och
statiska hinder i omgivningen, undviks. Vidare sa garanteras även att agenter som
ursprungligen är sammankopplade förblir s̊a. I den andra delen av avhandlingen
behandlas ett system av agenter som modelleras enligt kopplad singelintegrator
dynamik. Varje agent har en individuell uppgift som modelleras med Metric Interval
Temporal Logic (MITL). Genom att abstrahera rörelsen hos varje agent till ett
transitionssystem (TS) s̊a kan vi föresl̊a decentraliserade regleringsmetoder som
garanterar att varje agent uppfyller sin tilldelade uppgift. I den avslutande delen av
avhandlingen behandlas ett kopplat system best̊aende av ett flertal agenter med
osäkerhet och modellfel. Varje agent modelleras som en Markoviansk beslutsprocess
(Markov Decision Process, MDP), och ges en uppgift angiven i Probabilistic Com-
putational Tree Logic (PCTL). Vi söker reglerprotokoll som garanterar att varje
agent uppfyller sitt tilldelade m̊al. Problemet behandlas genom att klustra agenterna
med avseende p̊a inbördes beroende. Detta l̊ater oss i sin tur föresl̊a algoritmer
som garanterar att alla önskade specifikationer p̊a systemet uppfylls. Vi verifierar
algoritmernas korrekthet genom numeriska simuleringar utförda i MATLAB.
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TBA Timed Büchi Automata
TS Transition System
WTS Weighted Transition System

xi





List of Figures

1.1 A humanoid robot performing in an environment consisting of 6
rooms and 3 corridor regions. In room R6 there exists a ball that the
robot can grub and throw. . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The research fields on which this thesis lies on are the following:
Multi-Agent Systems, Control Theory and Formal Verification. . . . 3

2.1 An example of a WTS with 3 states. . . . . . . . . . . . . . . . . . . 11
2.2 A TBA that accepts the runs that satisfy the formula ϕ = ♦[c1,c2]{green}. 14

3.1 Illustration of two agents operating in the bounded workspace W
along with a static obstacle. . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The function bij,a(y). . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 The initial workspace of the simulated scenario (t = 0). Agent 1

(with blue), agent 2 (with green), agent 3 (with cyan) and agent 4
(with purple) and two obstacles (with red). . . . . . . . . . . . . . . 34

3.4 The resulting control inputs ui,∀i ∈ V. . . . . . . . . . . . . . . . . . 34
3.5 The evolution of the goal functions γi,∀i ∈ V, which are shown to

converge to zero. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 The evolution of the obstacle functions βi,∀i ∈ V, which are shown

to be always strictly positive, i.e., all the desired specifications are
fullfiled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 The motion of the agents in the workspace for t ∈ [0, 30]sec. . . . . . 36

4.1 Two WTSs T1, T2 representing two agents inW with Π1 = {π1
1 , π

1
2 , π

1
3},

Πinit
1 = {π1

1}, Π2 = {π2
1 , π

2
2 , π

2
3},Πinit

2 = {π2
1}. The transitions are

depicted with arrows which are annotated with the corresponding
weights. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 An illustrative example with 2 robots evolving in a common workspace 50
4.3 The accepting runs r̃t1, r̃t2, the collective run r̃tG and the corresponding

timed stamps. We denote with red dashed lines the times that both
agents have the same time stamps . . . . . . . . . . . . . . . . . . . 51

xiii



xiv List of Figures

5.1 An example of two agents performing in a partitioned workspace. . . 57
5.2 Illustration of agent i occupying region P (i, k) . . . . . . . . . . . . 60
5.3 Illustration of three connected agents i, j1, j2. The agents are occu-

pying the regions P (i, k) = D`i
, P (j2, k) = D`j1

and P (j1, k) = D`j2
at time tk = t0 + kT , depicted by green, red and blue color, respec-
tively. Their corresponding neighboring regions P̄ (i, k), P̄ (j1, k) and
P̃ (j2, k, ˜̀), ˜̀∈ {4, 5, 6}, respectively, are also depicted; P̃ (i, k, 6) =
D`des is the desired region in which agent i needs to move at time T
by applying a decentralized control law ui(xi, xj1 , xj2). . . . . . . . . 62

5.4 The prediction horizon of the ROCP along with the times tkz < tkz+1

< tkz + Tz+1 < tkz +Tz, with tkz = tk + zh and Tz = T − zh, z ∈M. 65
5.5 Illustration of agent j occypying region P (j, k) . . . . . . . . . . . . 67
5.6 A graphical illustration of the proposed framework. . . . . . . . . . . 73
5.7 Evolution of the agents’ trajectories up to time 6T in the workspace

W . Each point-to-point transition has time duration T = 3. The
depicted timed runs with red, green and magenta, of agents 1, 2 and
3, satisfy the formulas ϕ1, ϕ2 and ϕ3, respectively, while the agents
remain connected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 An example of a dependency graph G = (V, E) and its subgraphs for
N = 6 agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Chapter 1

Introduction

1.1 Motivation

The unprecedented development of digital processing units has boosted the manu-
facture and installation of industrial and especially domestic robots. They become
more powerful in terms of computing speed and capacity, and at the same time more
affordable. They are expected to accomplish various tasks specified by non-expert
end-users autonomously, without or with minimal human intervention.

Additionally, wireless communication technology enables almost all robots to
be connected and equipped also with internal or external smart sensors, meaning
that they can have more accurate and up-to-date information about their operation
space. This type of communication should be modeled and encoded in a formal and
correct way to save bandwidth and improve efficiency. All these issues bring the
need for a new framework for modeling, designing and analyzing interconnected
multi-agent systems.

During the last decade, decentralized control of multi-agent systems has gained a
significant amount of attention due to the great variety of its applications, including
multi-robot systems, transportation, multi-point surveillance and biological systems.
The main focus of multi-agent systems is the design of distributed control protocols
in order to achieve global tasks, such as consensus [1–5], in which all the agents
are required to converge to a specific point and formation [6, 7], in which all the
agents aim to form a predefined geometrical shape. At the same time, the agents
might need to fulfill certain transient properties, such as network connectivity [8–10]
and/or collision avoidance [11]. In parallel, another topic of research is the control
of multi-robot systems such that each robot (each robot can be seen as an agent) is
fulfilling desired tasks given in high-level specifications.

In particular, consider the robot in Figure 1.1 operating in a workspace which
is partitioned into 6 rooms and a corridor consisting of three regions. A high-level
task for the robot might have the following form: “Periodically visit rooms R1, R4,
R6, in this order, while avoiding rooms R2, R3 and R5”, or “Grab the ball that
lies in room R6 and deliver it in room R3 between 10 and 20 time units” or “The

1



2 Introduction

Figure 1.1: A humanoid robot moving to an environment consisting of 6 rooms and
3 corridor regions. In room R6 there exists a ball that the robot can grab and throw.

probability of the robot to visit rooms R1, R2 and R3, in this order, is more than
0.8”. The aforementioned specifications include complex tasks in which time and
probability play important role. The need of imposing to robots complex tasks that
have to be fulfilled, renders the control design a challenging task.

Motivated by the above, the main contribution of this thesis is to propose novel
control design methodologies which solve the following three general classes of
problems that arise in multi-agent systems:

1. Consider a multi-agent system modeled by Lagrangian dynamics operating in
a bounded workspace with obstacles. The goal is to design controllers that
use only local information for the neighboring agents such that a predefined
formation between the initially connected agents, is achieved. In parallel,
inter-agent collisions as well as collisions between the agents and the obstacles,
should be avoided.

2. Consider a multi-agent system modeled by coupled dynamics i.e., coupling
terms of neighboring agents. By assigning an individual high-level task to
each agent, in which time constraints of satisfying the task occur, design
decentralized control laws such that each agent fulfills the desired specification,
within the desired time bounds.

3. Consider a multi-agent system under the presence of uncertainties and mod-
eling errors. By assigning a specification task to each agent, which involves
other agents as well, design control policies such that the specifications are
guaranteed.

Taking the aforementioned into consideration, this thesis is divided intro three
parts. Every part deals with methodologies and control algorithms for solving
Problems 1, 2 and 3. The research areas that this thesis lies in is Multi-Agent
Systems, Control Theory and Formal Verification, as it can be observed in Figure
1.2. Finally, the work developed in this thesis, was also inspired by the proposal of
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•

Control
Theory

Formal
Verification

Systems
Multi-Agent

Figure 1.2: The research fields on which this thesis lies on are the following: Multi-
Agent Systems, Control Theory and Formal Verification.

the European Research Project BUCOPHSYS [12]. The next section considers the
outline of this thesis.

1.2 Thesis Outline and Contributions

In this Section, we provide the outline of the thesis and indicate the contributions of
each chapter. Chapter 2 is devoted for notations that will be adopted in this thesis
and preliminary background knowledge. The thesis is divided into three main parts
which solves the Problems 1-3 that were previously mentioned. In particular,

• The first part consists of Chapter 3. In this part, we propose a novel decentral-
ized control protocol for each agent of a multi-agent system consisting of N
rigid bodies governed by Lagrangian dynamics. The proposed control scheme
guarantees position and orientation based formation of the neighbors of the ini-
tial graph, inter-agent collision avoidance, agents-obstacles collision avoidance
as well as connectivity maintenance with the initial connected agents.

• The second part consists of Chapters 4, 5. In the second part we deal with
the problem of decentralized abstractions and control synthesis of multi-agent
systems. By using abstraction techniques, each agent’s motion is captured
through a Weighted Transition System (WTS). In the sequel, we provide
control synthesis tools which guarantee the satisfaction of individual formulas



4 Introduction

which are assigned to each agent. In this part, we work both in continuous
and discrete level.

• The third part consists of Chapter 6. This part addresses the problem of
probabilistic verification of multi-agent systems i.e., the design of control
policies such that each agent satisfies a high-level formula given in Probabilistic
Computational Tree Logic (PCTL).

Chapter 3

In this chapter, we address the problem of position- and orientation-based formation
control of a class of 2nd order nonlinear multi-agent systems in a 3D workspace with
obstacles. More specifically, we design decentralized control protocols such that each
agent achieves a predefined geometric formation with its initial neighbors, while only
using local information based on a limited sensing radius. The latter implies that
the proposed scheme guarantees that the initially connected agents remain always
connected. In addition, by introducing certain distance constraints, we guarantee
inter-agent collision avoidance as well as collision avoidance with the obstacles and
the boundary of the workspace. The proposed controllers employ a novel class of
potential functions and do not require a priori knowledge of the dynamical model,
except for gravity-related terms. The covered material is based on the following
contributions [13–15]:

• [C7] 1 Alexandros Nikou, Christos K. Verginis and Dimos V. Dimarogonas,
“Robust Distance-Based Formation Control of Multiple Rigid Bodies with
Orientation Alignment”, 20th World Congress of the International Federation
of Automatic Control (IFAC WC), Toulouse, France, 2017.

• [C9] Alexandros Nikou, Christos K. Verginis and Dimos V. Dimarogonas,
“On the Position and Orientation Based Formation Control of Multiple Rigid
Bodies with Collision Avoidance and Connectivity Maintenance”, 56th IEEE
Conference on Decision and Control, (CDC), 2017. (Under Review)

• [J2] Christos K. Verginis, Alexandros Nikou and Dimos V. Dimarogonas,
“Formation Control of Rigid Bodies with Collision Avoidance and Connectivity
Maintenance”, IEEE Transactions on Control of Network Systems (CONES),
2017. (Under preparation)

Chapter 4

In this chapter the problem of cooperative task planning of multi-agent systems
when timed constraints are imposed to the system is investigated. We consider timed
constraints given by Metric Interval Temporal Logic (MITL). We propose a method

1The notations C, J stands for conference and journal publications, respectively, enumerated
as appeared in author’s web page: https://people.kth.se/∼anikou/publications.html

https://people.kth.se/~anikou/publications.html
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for automatic control synthesis in a two-stage systematic procedure. Under the
proposed method, it is guaranteed that all the agents satisfy their own individual
task specifications as well as that the team satisfies a team task specification. The
covered material is based on the following contributions [16, 17]:

• [C2] Alexandros Nikou, Jana Tumova, Dimos V. Dimarogonas, “Cooperative
Task Planning Synthesis for Multi-Agent Systems Under Timed Temporal
Specifications”, American Control Conference (ACC), 2016, Boston, MA, USA.

• [C5] Sofie Andersson, Alexandros Nikou and Dimos V. Dimarogonas, “Control
Synthesis for Multi-Agent Systems under Metric Interval Temporal Logic Spec-
ifications”, 20th World Congress of the International Federation of Automatic
Control (IFAC WC), Toulouse, France, July 2017.

Chapter 5

A fully automated procedure for controller synthesis for a general class of multi-
agent systems under coupling constraints is presented in this chapter. Each agent is
modeled with dynamics consisting of two terms: the first one models the coupling
constraints and the other one is an additional bounded control input. We aim to
design these inputs so that each agent meets an individual high-level specification
given as a Metric Interval Temporal Logic (MITL). Furthermore, the connectivity
of the initially connected agents, is required to be maintained. First, assuming a
polyhedral partition of the workspace, a novel decentralized abstraction that provides
controllers for each agent that guarantee the transition between different regions is
designed. The controllers are the solution of a Robust Optimal Control Problem
(ROCP) for each agent. Second, by utilizing techniques from formal verification, an
algorithm that computes the individual runs which provably satisfy the high-level
tasks is provided. These results presented in this chapter are based on [18–20]:

• [C3] Alexandros Nikou, Dimitris Boskos, Jana Tumova and Dimos V. Dimarog-
onas, “Cooperative Planning Synthesis for Coupled Multi-Agent Systems
Under Timed Temporal Specifications”, American Control Conference (ACC),
2017, Seattle, WA, USA.

• [J1] Alexandros Nikou, Dimitris Boskos, Jana Tumova and Dimos V. Di-
marogonas, “On the Timed Temporal Logic Planning of Coupled Multi-Agent
Systems”, Automatica, 2017. (Under Review)

• [C10] Alexandros Nikou, Shahab Heshmati-alamdari, Christos K. Verginis and
Dimos V. Dimarogonas, “Decentralized Abstractions and Timed Constrained
Planning of a General Class of Coupled Multi-Agent Systems”, 56th IEEE
Conference on Decision and Control, (CDC), 2017. (Under Review)
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Chapter 6

In this chapter we present a fully automated procedure for controller synthesis for
multi-agent systems under the presence of uncertainties. We model the motion of
each of the agents in the environment as a Markov Decision Process (MDP) and
we assign to each agent one individual high-level formula given in Probabilistic
Computational Tree Logic (PCTL). Each agent may need to collaborate with other
agents in order to achieve a task. The collaboration is imposed by sharing actions
between the agents. We aim to design local control policies such that each agent
satisfies its individual PCTL formula. The proposed algorithm builds on clustering
the agents, MDP products construction and controller policies design. We show that
our approach has better computational complexity than the centralized case, which
traditionally suffers from very high computational demands. These results are based
on [21]:

• [C4] Alexandros Nikou, Jana Tumova and Dimos V. Dimarogonas, “Probabilis-
tic Plan Synthesis for Coupled Multi-Agent Systems”, 20th World Congress
of the International Federation of Automatic Control (IFAC WC), Toulouse,
France, 2017.

Finally, in Chapter 7, conclusions of this thesis as well as future research directions
are discussed.

Contributions not included in this thesis

The following publications are not covered in this thesis, but contain material that
motivates the work presented here [22–24]:

• [C8] Alexandros Nikou, Christos K. Verginis, Shahab Heshmati-alamdari and
Dimos V. Dimarogonas, “A Nonlinear Model Predictive Control Scheme for
Cooperative Manipulation with Singularity and Collision Avoidance”, 25th
IEEE Mediterranean Conference on Control and Automation (MED), Valletta,
Malta, 2017.

• [C6] Shahab Heshmati-Alamdari, Alexandros Nikou, Kostas J. Kyriakopoulos
and Dimos V. Dimarogonas, “A Robust Control Approach for Underwater
Vehicle Manipulator Systems in Interaction with Compliant Environments”,
20th World Congress of the International Federation of Automatic Control
(IFAC WC), Toulouse, France, 2017.

• [C1] Alexandros Nikou, Georgios Gavridis and Kostas J. Kyriakopoulos, “Me-
chanical Design, Modelling and Control of a Novel Aerial Manipulator”, IEEE
International Conference on Robotics and Automation (ICRA), May 26-30,
2015, Washington State Convention Center, Seattle, Washington, USA.



Chapter 2

Notation and Preliminaries

In this chapter, the notation that will be used hereafter as well as the necessary
background, are provided.

We denote by R,Q+,N the set of real, nonnegative rational and natural numbers
including 0, respectively. Rn≥0 and Rn>0 are the sets of real n-vectors with all
elements nonnegative and positive, respectively. Define also T∞ = T ∪ {∞} for
a set T ⊆ R. Given a set S, denote by |S| its cardinality, by Sn = S × · · · × S
its n-fold Cartesian product, and by 2S the set of all its subsets; ∂S stands for
the boundary of the set S. The notation ‖x‖ is used for the Euclidean norm of
a vector x ∈ Rn; ‖A‖ = max{‖Ax‖ : ‖x‖ = 1} stands for the induced norm of
a matrix A ∈ Rn×n. The absolute value of the maximum singular value and the
absolute value of the minimum eigenvalue of a matrix A ∈ Rn×n are denoted by
σmax(A), λmin(A), respectively. Define by 1n ∈ Rn, In ∈ Rn×n and 0m×n ∈ Rm×n
the column vector with all entries 1, the unit matrix and the m× n matrix with all
entries zeros, respectively. A matrix S ∈ Rn×n is called skew-symmetric if and only
if S> = −S. A⊗ B denotes the Kronecker product of the matrices A,B ∈ Rm×n
(see [25]). The set-valued function B : R3 × R>0 ⇒ R3, given as

B(c, r) = {x ∈ R3 : ‖x− c‖ ≤ r},

represents the 3D sphere with center c ∈ R3 and radius r ∈ R>0. Given a scalar
function y : Rn → R and a vector x ∈ Rn, denote by

∇xy(x) =
[
∂y(x)
∂x1

, . . . ,
∂y(x)
∂xn

]>
∈ Rn,

the gradient of y. The derivative of a matrix M ∈ Rm×n, with M = [mij ], is defined
by ∂M

∂x = [∂mij∂x ], with i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Definition 2.1. Given the sets S1, S2, their Minkowski addition is defined by:

S1 ⊕ S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.

7
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Definition 2.2. Consider two sets S1, S2 ⊆ Rn. Then, the Pontryagin difference is
defined by:

S1 ∼ S2 = {x ∈ Rn : s1 + s2 ∈ S1,∀ s2 ∈ S2}.

Definition 2.3. Given a set S, we say that a family of sets {S`}`∈I forms a partition
of S if S 6= ∅,

⋃
`∈I

S` = S and for every S, S′ ∈ S with S 6= S′ it holds S ∩S′ = ∅; I is

a set of indexes which stands for the enumeration of the members of the partition.

Definition 2.4. ([26]) A continuous function α : [0, a)→ R≥0 is said to belong to
class K, if it is strictly increasing and α(0) = 0. It is said to belong to class K∞ if
a =∞ and α(r)→∞, as r →∞.

Definition 2.5. ([26]) A continuous function β : [0, a) × R≥0 → R≥0 is said to
belong to class KL, if:

• For each fixed s, β(r, s) ∈ K with respect to r.

• For each fixed r, β(r, s) is decreasing with respect to s and β(r, s) → 0, at
s→∞.

Definition 2.6. ([27]) A nonlinear system ẋ = f(x, u) with initial condition x(t0)
is said to be Input to State Stable (ISS) if there exist functions β ∈ KL and σ ∈ K∞
such that:

‖x(t)‖ ≤ β(‖x(t0)‖, t) + σ(‖u‖).

Definition 2.7. ([27]) A Lyapunov function V (x, u) for the nonlinear system
ẋ = f(x, u) with initial condition x(t0) is said to be ISS-Lyapunov function if there
exist functions α, σ ∈ K∞ such that:

V̇ (x, u) ≤ −α(‖x‖) + σ(‖u‖),∀x, u. (2.1)

Theorem 2.1. A nonlinear system ẋ = f(x, u) with initial condition x(t0) is said
to be ISS if and only if it admits a ISS-Lyapunov function.

Proof. The proof can be found in [28].

Theorem 2.2. Consider the system ẋ = f(x) where f : D → Rn is piecewise
continuous and locally Lipschitz on D ⊆ Rn; D is a domain that contains the origin.
Let V : D → R be a continuously differentiable function such that α1(‖x‖) ≤ V (x) ≤
α2(‖x‖) and V̇ ≤ −w(x), ∀‖x‖ ≥ µ > 0 for every t ≥ 0 and x ∈ D, where α1, α2
are class K functions and w3 is a continuous positive definite function. Take r > 0
such that B(0, r) ⊆ D and suppose that µ < α−1

2 (α1(r)). Then, there exist a class
K∞ function α3 and for every initial state x(t0) satisfying ‖x(t0)‖ ≤ α−1

2 (α1(r)),
there exists T ≥ 0 such that

‖x(t)‖ ≤ α3(‖ζ0‖),∀ t0 ≤ t ≤ T,
‖x(t)‖ ≤ α−1

1 (α2(σ)),∀t > T.
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Proof. The proof can be found in [26, Appendix C.9].

Lemma 2.1. (Grönwall-Bellman Inequality) Let ȳ : [a, b]→ R be continuous and
ỹ : [a, b]→ R be continuous and nonnegative. If a continuous function y : [a, b]→ R
satisfies

y(t) ≤ ȳ(t) +
∫ t

a

ỹ(s)y(s)ds,

for t ∈ [a, b], then on the same interval it holds that:

y(t) ≤ ȳ(t) +
∫ t

a

ȳ(s)ỹ(s) exp
[∫ t

s

ỹ(τ)dτ
]
ds.

Proof. The proof can be found in [26, Appendix A].

2.1 Time Sequence, Timed Run and Weighted Transition
System

In the next three sections, we include definitions from computer science that are
required to analyze the framework of this thesis.

An infinite sequence of elements of a set S is called an infinite word over this set
and it is denoted by w = w(0)w(1) . . .. The j-th element of a sequence is denoted
by w(j). For certain technical reasons that will be clarified in the sequel, we define
T , Q+. An atomic proposition σ is a statement that is either True (>) or False
(⊥).

Definition 2.8. ([29]) A time sequence τ = τ(0)τ(1) . . . is an infinite sequence of
time values τ(j) ∈ T, satisfying the following properties:

• Monotonicity: τ(j) < τ(j + 1) for all j ≥ 0.

• Progress: For every t ∈ T, there exists j ≥ 1, such that τ(j) > t.

Definition 2.9. ([29]) Let Σ be a finite set of atomic propositions. A timed word
w over the set Σ, is an infinite sequence wt = (w(0), τ(0))(w(1), τ(1)) . . . where
w(0)w(1) . . . is an infinite word over the set 2Σ, and τ(0)τ(1) . . . is a time sequence
with τ(j) ∈ T, j ≥ 0.

Definition 2.10. A Weighted Transition System (WTS) is a tuple (S, S0, Act,
−→, d,Σ, L) where:

• S is a finite set of states;

• S0 ⊆ S is a set of initial states;

• Act is a set of actions;

• −→⊆ S ×Act× S is a transition relation;
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• d :−→→ T is a map that assigns a positive weight to each transition;

• Σ is a finite set of atomic propositions;

• L : S → 2Σ is a labeling function, which maps each state with the atomic
propositions that are true in this state.

The notation s
α−→ s′ is used to denote that (s, α, s′) ∈−→ for s, s′ ∈ S and

α ∈ Act. For every s ∈ S and α ∈ Act define Post(s, α) = {s′ ∈ S : (s, α, s′) ∈−→}.
Hereafter, −→ will denote transitions and → will denote function mappings.

Definition 2.11. A timed run of a WTS is an infinite sequence

rt = (r(0), τ(0))(r(1), τ(1))(r(2), τ(2)) . . . ,

such that r(0) ∈ S0, and for all j ≥ 0, it holds that r(j) ∈ S and (r(j), α(j), r(j +
1)) ∈−→ for a sequence of actions α(0)α(1)α(2) . . . with α(j) ∈ Act,∀ j ≥ 0. The
time stamps τ(j), j ≥ 0 are inductively defined as:

1. τ(0) = 0;

2. τ(j + 1) = τ(j) + d((r(j), α(j), r(j + 1))), ∀ j ≥ 0.

Definition 2.12. Every timed run rt of a WTS generates a timed word

w(rt) = (w(0), τ(0))(w(1), τ(1))(w(2), τ(2)) . . . ,

over the set 2Σ, where w(j) = L(r(j)), ∀ j ≥ 0 is the subset of atomic propositions
that are true in state r(j).

2.2 Metric Interval Temporal Logic (MITL)

The syntax of Metric Interval Temporal Logic (MITL) over the set of atomic
propositions Σ is defined by the grammar:

ϕ := σ | ¬ϕ | ϕ1 ∧ ϕ2 | ©I ϕ | ♦Iϕ | �Iϕ | ϕ1 UI ϕ2,

where σ ∈ Σ is an atomic proposition, ¬,∧ are boolean negation and conjunction
operators, respectively, and ©, ♦, � and U are the next, eventually (eventually in
the future), always (now and forever in the future) and until temporal operators,
respectively, as they are defined in [30, Chapter 5]; I = [a, b] ⊆ T where a, b ∈ [0,∞]
with a < b is a non-empty timed interval. MITL can be interpreted either in
continuous or point-wise semantics [31]. In this thesis, the latter approach is utilized,
since the consideration of point-wise (event-based) semantics is more suitable for
the automata-based specifications considered in a discretized state-space. The MITL
formulas are interpreted over timed words like the ones produced by a WTS as is
given in Definition 2.12.
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s0 s1 s2

1.0

2.0

1.5

0.5

Figure 2.1: An example of a WTS with 3 states.

Definition 2.13. ([31], [32]) Given a timed word wt = (w(0), τ(0))(w(1), τ(1)) . . . ,
an MITL formula ϕ and a position i in the timed word, the satisfaction relation
(wt, i) |= ϕ, for i ≥ 0 (read wt satisfies ϕ at position i) is inductively defined as
follows:

(wt, i) |= σ ⇔ σ ∈ w(i),
(wt, i) |= ¬ϕ⇔ (wt, i) 6|= ϕ,

(wt, i) |= ϕ1 ∧ ϕ2 ⇔ (wt, i) |= ϕ1 and (wt, i) |= ϕ2,

(wt, i) |=©I ϕ⇔ (wt, i+ 1) |= ϕ and τ(i+ 1)− τ(i) ∈ I,
(wt, i) |= ♦Iϕ⇔ ∃j ≥ i, such that (wt, j) |= ϕ, τ(j)− τ(i) ∈ I,
(wt, i) |= �Iϕ⇔ ∀j ≥ i, τ(j)− τ(i) ∈ I ⇒ (wt, j) |= ϕ,

(wt, i) |= ϕ1 UI ϕ2 ⇔ ∃j ≥ i, s.t. (wt, j) |= ϕ2,

τ(j)− τ(i) ∈ I and (wt, k) |= ϕ1,∀ i ≤ k < j.

We say that a timed run rt = (r(0), τ(0))(r(1), τ(1)) . . . satisfies the MITL for-
mula ϕ (we write rt |= ϕ) if and only if the corresponding timed word w(rt) =
(w(0), τ(0))(w(1), τ(1)) . . . with w(j) = L(r(j)),∀j ≥ 0, satisfies the MITL formula
(w(rt) |= ϕ).

It has been proved that MITL is decidable in infinite words and point-wise
semantics, which is the case considered here (see [33, 34] for details). The model
checking and satisfiability problems are EXPSPACE-complete. It should be noted
that in the context of timed systems, EXSPACE complexity is fairly low [35].

Example 2.1. Consider a set of atomic propositions Σ = {σ1, σ2} and an MITL
formla ϕ = �[0,∞](σ1 ⇒ ♦[10,20]σ2) over 2Σ. The formula means that all events σ1
must be followed by a σ2 event that occurs between 10 and 20 time units later.
Consider also the timed word:

wt = (σ1, 1)(σ1, 2)(σ1, 3)(σ2, 20) . . . ,

It can be observed that wt satisfies ϕ (wt1 |= ϕ) since all events σ1 at the corre-
sponding time stamps 1, 2 and 3 are followed by an event σ2 after time that belongs
to interval [10, 20].

Example 2.2. Consider the WTS with S = {s0, s1, s2}, S0 = {s0}, Act = ∅,
−→= {(s0, ∅, s1), (s1, ∅, s2), (s1, ∅, s0), (s2, ∅, s1)}, d((s0, ∅, s1)) = 1.0, d((s1, ∅,
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s2)) = 1.5, d((s1, ∅, s0)) = 2.0, d((s2, ∅, s1)) = 0.5, Σ = {green}, L(s0) = {green},
L(s1) = L(s2) = ∅ depicted in Figure 2.1. Let two timed runs of the system be:

rt1 = (s0, 0.0)(s1, 1.0)(s0, 3.0)(s1, 4.0)(s0, 6.0) . . . ,
rt2 = (s0, 0.0)(s1, 1.0)(s2, 2.5)(s1, 3.0)(s0, 5.0) . . . ,

and two MITL formulas ϕ1 = ♦[2,5]{green}, ϕ2 = �[0,5]{green}. According to the
MITL semantics of Definition 2.13, it follows that the timed run rt1 satisfies ϕ1
(rt1 |= ϕ1), since at the time stamp 3.0 ∈ [2, 5] we have that L(s0) = {green} so the
atomic proposition green occurs at least once in the given interval. On the other
hand, the timed run rt2 does not satisfy ϕ2 (rt2 6|= ϕ2) since the atomic proposition
green does not hold at every time stamp of the run rt2 (it holds only at the time
stamp 0.0).

2.3 Timed Büchi Automata

Timed Büchi Automata (TBA) were originally introduced in [29]. In this work, we
partially adopt the notation from [35, 36]. Let C be a finite set of clocks with C , |C|.
The set of clock constraints Φ(C) is defined by the grammar:

φ := > | ¬φ | φ1 ∧ φ2 | c ./ ψ,

where c ∈ C is a clock, ψ ∈ T is a clock constant and ./ ∈ {<,>,≥,≤,=}. A clock
valuation is a function ν : C → T that assigns a value to each clock. A clock ci has
valuation νi for i ∈ {1, . . . , C}, and ν = (ν1, . . . , νC). We denote by ν |= φ the fact
that the valuation ν satisfies the clock constraint φ.

Definition 2.14. A Timed Büchi Automaton is a tuple (Q, Q0, C, Inv, E, F , Σ,
L) where

• Q is a finite set of locations;

• Q0 ⊆ Q is the set of initial locations;

• C is a finite set of clocks;

• Inv : Q→ Φ(C) is an invariant function that labels each location s ∈ S with
a subset of clock constraints in Φ(C);

• E ⊆ Q×Φ(C)×2C×Q gives the set of edges. An edge (s, γ,R, s′) represents a
transition from state s to state s′; γ is a clock constraint over C that specifies
when the switch is enabled (guard). This can be a constraint either in the
invariant or in the edge. The set R ⊆ C represents the Reset set i.e. if a ci ∈ R
then νi = 0, i ∈ {1, . . . , C} and if ci /∈ R, νi remains unchanged.

• F ⊆ Q is a set of accepting locations; Σ is a finite set of atomic propositions;
and
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• L : Q→ 2Σ labels every state with a subset of atomic propositions.

A state of a TBA is a pair (q, ν) where q ∈ Q and ν satisfies the invariant
Inv(q), i.e., ν |= Inv(q). The initial state is (q(0), (0, . . . , 0)), where q(0) ∈ Q0.
Given two states (q, ν) and (q′, ν′) and an edge e = (q, γ,R, q′), there exists a
discrete transition (q, ν) e−→ (q′, ν′) iff ν |= γ, ν′ |= Inv(q′), and R is the reset set,
i.e., ν′i = 0 for ci ∈ R and ν′i = νi for ci /∈ R. Given a δ ∈ T, there exists a time
transition (q, ν) δ−→ (q′, ν′) iff q = q′, ν′ = ν + δ (δ is summed component-wise)
and ν′ |= Inv(q). We write (q, ν) δ−→ e−→ (q′, ν′) if there exists q′′, ν′′ such that
(q, ν) δ−→ (q′′, ν′′) and (q′′, ν′′) e−→ (q′, ν′) with q′′ = q.

An infinite run of a TBA starting at state (q(0), ν) is an infinite sequence of
time and discrete transitions

(q(0), ν(0)) δ0−→ (q(0)′, ν(0)′) e0−→ (q(1), ν(1)) δ1−→ (q(1)′, ν(1)′) . . . ,

where (q(0), ν(0)) is an initial state. This run produces the timed word

w = (L(q(0)), τ(0))(L(q(1)), τ(1)) . . . ,

with τ(0) = 0 and τ(i+1) = τ(i)+δi, ∀ i ≥ 1. The run is called accepting if q(i) ∈ F
for infinitely many times. A timed word is accepted if there exists an accepting run
that produces it.

The problem of deciding the language emptiness of a given TBA is PSPACE-
complete [29]. In other words, an accepting run of a given TBA can be synthesized,
if one exists. Any MITL formula ϕ over Σ can be algorithmically translated into a
TBA with the alphabet 2Σ, such that the language of timed words that satisfy ϕ is
the language of the accepting timed words of the TBA ([33, 37, 38]).

Example 2.3. A TBA with Q = {q0, q1, q2}, Qinit = {q0}, C = {c}, Inv(q0) =
Inv(q1) = Inv(q2) = ∅,

E = {(q0, {c ≤ c2}, ∅, q0), (q0, {c ≤ c1 ∨ c > c2}, c, q2),
(q0, {c ≥ c1 ∧ c ≤ c2}, c, q1), (q1,>, c, q1), (q2,>, c, q2)},

F = {q1},Σ = {green},L(q0) = L(q2) = ∅,L(q1) = {green}, which accepts all the
timed words that satisfy the formula ϕ3 = ♦[c1,c2]{green} is depicted in Figure 2.2.
An example of a timed run of this TBA is

(q0, 0) δ=α1−→ (q0, α1) e=(q0,{c≥c1∧c≤c2},c,q1)−→ (q1, 0) . . . ,

with c1 ≤ α1 ≤ c2, which generates the timed word

wt = (L(q0), 0)(L(q0), α1)(L(q1), α1) . . . = (∅, 0)(∅, α1)({green}, α1) . . . ,

which satisfies the formula ϕ3. The timed run

(q0, 0) δ=α2−→ (q0, α2) e=(q0,{c≤c1∨c>c2},c,q2)−→ (q2, 0) . . . ,
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q0 q1

q2

>, c := 0

>, c := 0

c ≤ c2, ∅

c ≥ c1 ∧ c ≤ c2
c := 0

c < c1 ∨ c > c2
c := 0

{green}

Figure 2.2: A TBA A that accepts the runs that satisfy the formula ϕ =
♦[c1,c2]{green}.

with α2 < c1, generates the timed word

wt = (L(q0), 0)(L(q0), α2)(L(q2), α2) . . . = (∅, 0)(∅, α2)(∅, α2) . . . ,

which does not satisfy the formula ϕ3.

Remark 2.1. Traditionally, the clock constraints and the TBAs are defined with
T = N. However, they can be extended to accommodate T = Q+, by multiplying
all the rational numbers that are appearing in the state invariants and the edge
constraints with their least common multiple.

2.4 Probabilistic Verification

Markov Decision Processes

Markov Decision Processes (MDPs) offer a mathematical framework for model-
ing systems with stochastic dynamics. These models provide an effective way for
describing processes in which sequential decision making is required for a system.

Definition 2.15. A probability distribution over a countable set S is a function
σ : S → [0, 1] satisfying

∑
s∈S

σ(s) = 1. Define by Σ(S) the set of all probability

distributions over the set S.

Definition 2.16. A Discrete Time Markov Chain (DTMC) D is a tuple (S, s0, P )
where: S is a finite set of states; s0 ∈ S is the initial state; P : S × S → [0, 1] is the
transition probability matrix where for all s ∈ S it holds that

∑
s′∈S

P (s, s′) = 1.
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Definition 2.17. A Markov Decision Process (MDP) M is a tuple (S, s0, Act, T )
where:

• S is a finite set of states;

• s0 ∈ S is the initial state;

• Act is a finite set of actions (controls);

• T : S → 2Act×Σ(S) is the transition probability function.
Denote by A(s) the set of all actions that are available at the state s ∈ S and

let δ(s, α, s′) ∈ [0, 1] be the probability of transitioning from the state s to the state
s′ under the action α ∈ A(s). For a state s ∈ S and an action α ∈ A(s), define the
set Post(s, α) = {s′ ∈ S : δ(s, α, s′) > 0}.

The transition probability function T can be represented as a matrix with
|S|−1∑
i=0
|A(si)| rows and |S| columns.

An execution of an MPD is represented by a path. Formally, an infinite path
r is a sequence of states of the form: r = s0

α0−→ s1
α1−→ . . .

αk−1−→ sk
αk−→ sk+1 . . . ,

such that sk ∈ Sk, αk ∈ A(sk) and δ(sk, αk+1, sk+1) > 0,∀k ≥ 0. A finite path
ρ = s0

α0−→ s1
α1−→ . . .

αn−1−→ sn is a prefix of an infinite path ending in a state. In
case of the actions are not taken into consideration, the infinite and finite run can
be written as r = s1s2 . . . sn . . . and ρ = s1s2 . . . sn respectively. Denote by |ρ| = n
the length of the finite path and by r(k), ρ(k) the k-th element of the paths r, ρ
respectively. The set of all finite and infinite paths are defined by FPath and IPath,
respectively.

A control policy at each state of an MDP and is formally defined as follows:
Definition 2.18. (Control Policy) A control policy µ : FPath→ Act of an MDP
model M is a function mapping a finite path ρ = s0

α0−→ s1
α1−→ . . .

αn−1−→ sn, of M
onto an action in A(sn) and specifies for every finite path, the next action to be
enabled. If a control policy depends only on the last state of the finite path ρ, then
it is called a stationary policy.

Denote by M the set of all control policies. Under a control policy µ ∈ M ,
an MDP becomes a DTMC Dµ (see Definition 2.16). Let IPathµ ⊆ IPath and
FPathµ ⊆ FPath denote the set of infinite and finite paths that can be produced
under the control policy µ. For each policy µ ∈M , a probability measure Probµ over
the set of all paths (under the control policy µ) IPathµ is induced. A probability
measure Probfin

µ over the set of paths FPathµ for a finite path ρ, is defined as:

Probfin
µ (ρ) =

{
1 , if |ρ| = 0,
P (s0, s1)P (s1, s2) . . . P (sn−1, sn) , otherwise,

where P (sk, sk+1), k ∈ {0, . . . , n} are the corresponding transition probabilities in
Dµ.
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Probabilistic Computational Tree Logic (PCTL)

Probabilistic Computational Tree Logic (PCTL) [39] is used to express properties
of MDPs. PCTL formulas can be recursively defined as follows:

ϕ := > | χ | ¬ϕ | ϕ1 ∧ ϕ2 | P./p[ψ], (state formulas)
ψ :=©ϕ | ϕ1 U≤k ϕ2, (path formulas)

where χ ∈ Act is an action, ./= {<,>,≤,≥}, p ∈ [0, 1] and k ∈ N ∪ {∞}. In the
syntax above, we distinguish between state formulas ϕ and path formulas ψ, which
are evaluated over states and paths, respectively. A property of a model will always
be expressed as a state formula; path formulas only occur as the parameter of the
probabilistic path operator P./p[ψ]. Intuitively, a state s satisfies P./p[ψ] (we write
s |= P./p[ψ]) if there exists a control policy µ under which the probability of all
paths starting from s is in the range of the interval ./ p.

For path formulas, we allow the next (©) operator which is true if the state
formula ϕ is satisfied in the next state and the until operator (U≤k) which is true if
ϕ2 is satisfied within k steps and ϕ1 holds up until that point.

Definition 2.19. [39] (Semantics of PCTL) For any state s ∈ S, the satisfaction
relation |= is defined inductively as follows:

s |= >, for every ∀s ∈ S, (2.2)
s |= χ⇔ χ ∈ A(s), (2.3)
s |= ¬ϕ⇔ s 6|= ϕ, (2.4)
s |= ϕ1 ∧ ϕ2 ⇔ s |= ϕ1 and s |= ϕ2, (2.5)
s |= P./p[ψ]⇔ Probµ(s, ψ) ./ p. (2.6)

Here Probµ(s, ψ) denotes the probability that a path starting from the state s
satisfies the path formula ψ under the specific control policy µ. Moreover, for any
path r we have that:

r |=©ϕ⇔ r(1) |= ϕ,

r |= ϕ1 U≤k ϕ2 ⇔ ∃ i ≤ k, r(i) |= ϕ2 ∧ r(j) |= ϕ1,∀j < i.

For the operators � (always) and ♦ (eventually) it holds that:

P./p
[
♦≤kϕ

]
= P./p

[
> U≤kϕ

]
,

P./p
[
�≤kϕ

]
= P./p

[
♦≤k¬ϕ

]
,

where ./= {<,>,≤,≥} and ./ = {>,<,≥,≤}.

Probabilistic Model Checking

There are three problems that have generally been considered in probabilistic model
checking of stochastic systems:
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• (Model Checking) Given an MDP M and a property ϕ, check which of the
states of the MDP M satisfy ϕ.

• (Controller Synthesis): Given an MDPM and a property ϕ, find all the control
policies under which the formula is satisfied.

• (Existence) Given an MDP M and a property ϕ, find, if it exists, a control
policy µ such that the MDP M satisfies the property ϕ under µ.

We refer the reader to [40, 41] for more details about probabilistic model checking.





Chapter 3

Formation Control of Multiple Rigid Bodies

This chapter addresses the problem of position- and orientation-based formation
control of a general class of 2nd nonlinear multi-agent systems in a 3D workspace
with obstacles. More specifically, we design a decentralized control protocol such that
each agent achieves a predefined geometric formation with its initial neighbors, while
using local information based on a limited sensing radius. The latter implies that the
proposed scheme should guarantee that the initially connected agents remain always
connected. In addition, by introducing certain distance constraints, we guarantee
inter-agent collision avoidance as well as collision avoidance with the obstacles and
the boundary of the workspace. The proposed controllers employ a novel class of
potential functions and do not require a priori knowledge of the dynamical model,
except for gravity-related terms. Finally, simulation results verify the validity of the
proposed framework.

3.1 Introduction

A particular multi-agent problem that has been considered in the literature is
the formation control problem, where the agents represent robots that aim to
form a prescribed geometrical shape, specified by a certain set of desired relative
configurations. The main categories of formation control that have been studied in
the related literature are ([7]) position-based control, displacement-based control,
distance-based control and orientation-based control.

In position-based formation control, the agents control their positions to achieve
the desired formation, as prescribed by some desired position offsets with respect to
a global coordinate system. When orientation alignment is considered as a control
design goal, the problem is known as orientation-based (or bearing-based) formation
control. The desired formation is then defined by relative inter-agent orientations.
The orientation-based control steers the agents to configurations that achieve desired
relative orientation angles. In this work, we aim at designing decentralized control
protocols such that both position- and orientation-based formation are achieved.

The literature on position-based formation control is rich, and is traditionally

19
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categorized in single or double integrator agent dynamics and directed or undirected
communication topologies (see e.g. [6, 42–61]). Orientation-based formation control
has been addressed in [62–65], whereas the authors in [65–67] have considered the
combination of position- and orientation-based formation

The dominant case in the related literature of formation control is the two-
dimensional one with simple dynamics and point-mass agents. In real applications,
however, the engineering systems may have nonlinear 2nd order dynamics, for which
due to imperfect modeling the exact model is not a priori known. Other objectives
concern connectivity maintenance, collision avoidance between the agents as well
as collision avoidance between the agents and potential obstacles of the workspace,
which renders the formation control problem a particularly challenging task. Ac-
cording to the authors’ best knowledge, the combination of the aforementioned
specifications has not been addressed in the related literature.

Motivated by this, we aim to address here the position-based formation control
problem with orientation alignment for a team of rigid bodies operating in 3D
space, with 2nd order nonlinear dynamics. We propose a decentralized control
protocol that guarantees a geometric prescribed position- and orientation-based
formation between initially connected agents. The proposed methodology guarantees
inter-agent collision avoidance and collision avoidance with the obstacles and the
boundary of the workspace. In parallel, connectivity maintenance of the initially
connected agents as well as representation singularity avoidance are ensured. In
order to deal with the aforementioned specifications, we employ a novel class of
potential functions. A special case of correct-by-construction potential functions,
namely navigation functions, has been introduced in [68, 69] for the single-robot
navigation, and has been employed in multi-agent formation control in [70–76].
A more general potential function framework has been employed in [46, 77]. The
aforementioned works, however, have only addressed the single integrator case,
with no straightforward extension to higher-order systems. The authors in [78] deal
with the double integrator case, but the goal was only navigation of the agents to
specific points. In addition, in many works that employ navigation functions for
navigation/formation control, the designed gains and parameters (usually referred as
k-the navigation function gain- and ε-the arbitrarily small distance to the obstacles)
cannot be found trivially, since, they appear in both sides of the derived inequalities.

In our previous work [13], we treated a similar problem by utilizing a Prescribed
Performance Control (PPC) scheme instead (for PPC controller design we refer
to [79]), while only guaranteeing collision avoidance between neighboring agents
forming a tree, with no obstacles or representation singularity avoidance. The main
contribution of this chapter is a novel decentralized control protocol scheme that
generalizes [13] and solves a wider class of problems of multiple rigid bodies under
Lagrangian dynamics with guaranteed collision avoidance among the agents, collision
avoidance between agents and obstacles as well as singularity avoidance by utilizing
a novel class of decentralized potential functions.

The remainder of this chapter is structured as follows. Section 3.2 gives the
necessary notation of this chapter. Section 3.3 provides the system dynamics and
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the formal problem statement. Section 3.4 discusses the technical details of the
solution and Section 3.5 is devoted to a simulation example. Finally, conclusions of
this chapter are discussed in Section 3.6.

Remark 3.1. This chapter is based on the author’s ongoing research. Thus, the
reported results are not definitive and will be updated accordingly in the future.

3.2 Notation

The vector connecting the origins of coordinate frames {A} and {B} expressed in
frame {C} coordinates in 3D space is denoted by pCB/A ∈ R3. We further denote by
qB/A = [φB/A, θB/A, ψB/A]τ the Euler angles representing the orientation of frame {B}
with respect to frame {A}, with −π ≤ φA/B, ψA/B ≤ π and π

2 ≤ θA/B ≤ π
2 , where

T = (−π, π)× (π2 ,
π
2 )× (π, π) is the 3D torus. The angular velocity of frame {B}

with respect to {A}, expressed in frame {C} coordinates, is denoted by ωCB/A ∈ R3.
We also use the notation M = R3 × T. For notational brevity, when a coordinate
frame corresponds to an inertial frame of reference {0}, we will omit its explicit
notation (e.g., pB = p0

B/0, ωB = ω0
B/0). All vector and matrix differentiations are

derived with respect to the inertial frame {0}, unless otherwise stated.

3.3 Problem Formulation

3.3.1 System Model
Consider a set of N rigid bodies, with V = {1, 2, . . . , N}, N ≥ 2, operating in
MN , with coordinate frames {i}, i ∈ V, attached to their centers of mass. Consider
a workspace in R3 modeled by a bounded sphere W = B(pw, rw) with center pw
and radius rw. Without loss of generality, we assume that pw = 03×1, representing
an inertial reference frame {0}. The subscript w stands for the workspace W .
We consider that each agent occupies a sphere B(pi, ri), where pi ∈ R3 is the
position of the agent’s center of mass and ri < rw is the agent’s radius. We
also denote by qi ∈ T, the Euler angles representing the agents’ orientation with
respect to {0}, with qi = [φi, θi, ψi]>. By defining xi ∈ M, vi ∈ R6, with xi =
[xi1 , . . . , xi6 ]> = [p>i , q>i ]>, vi = [ṗ>i , ω>i ]>, we model each agent’s motion with the
2nd order dynamics:

ẋi = J(qi)vi, (3.1a)
ui = Mi(xi)v̇i + Ci(xi, ẋi)vi + gi(xi), (3.1b)

where J : T → R6×6 is a Jacobian matrix that maps the Euler angle rates to vi,
given by

J(qi) =
[
I3 03×3

03×3 Jqi(qi)

]
,



22 Formation Control of Multiple Rigid Bodies

Jq(qi) =


1 sin(φi) tan(θi) cos(φi) tan(θi)
0 cos(φi) − sin(φi)

0 sin(φi)
cos(θi)

cos(φi)
cos(θi)

 ,
The matrix J is not defined when cos(θi) = 0 ⇔ θi = ±π2 , which we refer to as
representation singularity. The proposed controller will guarantee, however, that
this is always avoided and thus J is well-defined.

Furthermore, Mi : M → R6×6 is the positive definite inertia matrix, Ci :
M× R6 → R6×6 is the Coriolis matrix, and gi : M→ R6 is the gravity vector. We
consider that the Coriolis and the inertia vector fields are unknown to the controller.
Finally, ui ∈ R6 is the control input representing the 6D generalized actuation force
acting on agent i ∈ V . Let us also define the stack vectors x = [x>1 , . . . , x>N ]> ∈MN

and v = [v>1 , . . . , v>N ]> ∈ R6N .

Remark 3.2. According to [80], the following hold:

1. The matrices Mi(x) are positive definite ∀i ∈ V and there exist positive and
finite constants mi,mi such that for all i ∈ V:

mi‖y‖2 ≤ y>Mi(x)y ≤ mi‖y‖2,∀x ∈M, y ∈ R6. (3.2)

2. The matrices Md
i (xi, ẋi)− 2Ci(xi, ẋi) are skew-symmetric for every (xi, ẋi) ∈

M× R6, i ∈ V, with

Md
i (xi, ẋi) =

[
∂Mi(xi1)
∂xi1

, . . . ,
∂Mi(xi6)
∂xi6

]
(ẋi ⊗ 16).

From [81], we have that a quadratic form of a skew-symmetric matrix is always
equal to 0. Hence, for the matrices Md

i − 2Ci, the following holds:

y>
[
Md
i (x, z)− 2Ci(x, z)

]
y = 0,∀x, y, z ∈ R6, i ∈ V. (3.3)

We consider that in the given workspace there exist Z ∈ N static obstacles,
with Z , {1, . . . , Z}, modeled by the spheres B(poz , roz), with centers and radii
poz ∈ R3, roz ∈ R>0, z ∈ Z, respectively. We also define the neighboring set as the
set-valued function Ni : MN ⇒ N, with Ni(x) = {j ∈ V\{i} : ‖pi − pj‖ ≤ di}.
Define also Ni(x) , |Ni(x)|. For the state measurement of each agent, the following
assumption is required.

Assumption 3.1. (Measurements Assumption) Each agent i can measure its own
states xi, vi, i ∈ V and has a limited sensing range of

di > max
i,j∈V,i6=j,z∈Z

{ri + rj , ri + roz}.

Moreover, at a configuration x, each agent i ∈ V knows Ni(x), xj , vj , ∀j ∈ Ni(x) as
well as Nj(x), xj∗ , xjj∗,des,∀j∗ ∈ Nj(x). The terms xij,des are the desired relative
displacement that prescribe the desired formation configuration.
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{0}
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pi

di

ri•

B(pi, ri)

{j}

pj

dj

rj•

B(pj , rj)

•
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Figure 3.1: Illustration of two moving agents i, j ∈ V and a static obstacle oz in the
workspace; {0} is the inertial frame, {i}, {j} are the frames attached to the agents’
center of mass, pi, pj , poz ∈ R3 are the positions of the center of mass of the agents
i, j and the obstacle oz, respectively, with respect to {0}; ri, ri, roz are the radii of
the agents i, j and the obstacle oz, respectively; di, dj with di > dj are the agents’
sensing ranges. Note that the agents are not neighbors since pj(t) /∈ B(pi, di) and
pi /∈ B(pj , dj).

Assumption 3.1 states that each agent i ∈ V has feedback of the states of the
neighbors, as well as the poses of the neighbors’ neighbors and their desired relative
displacements, which can be continuously transmitted to agent i ∈ N by its neighbors
j ∈ Ni(x). According to di from Assumption 3.1, an agent j can be in the neighboring
set i without the agents colliding. The geometry of two agents i, j and an obstacle
z in the workspace W is depicted in Figure 3.1.
Let us also define the distances dij,a : R6 → R≥0, diz,o : R3 → R≥0, with:

dij,a(pi, pj) = ‖pi − pj‖,
diz,o(pi) = ‖pi − poz‖,

as well as the constants

dij,a = ri + rj ,

diz,o = ri + roz ,
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∀i, j ∈ V, i 6= j, z ∈ Z. The constants dij,a, dij,o represent the minimum distance
such that agents i and j and agent i and object z, do not collide, respectively.
The subscripts a and o stand for agent and obstacle, respectively. The following
assumption is required, for the feasibility of the problem:

Assumption 3.2. (Problem Feasibility) It is assumed that the following hold:

1. ‖poz − poz′‖ ≥ 2 max
i∈V
{ri}+ roz + roz′ + εr,∀z, z′ ∈ Z, with z 6= z′,

2. rw − (‖poz‖+ roz ) ≥ 2 max
i∈V
{ri}+ εr,∀z ∈ Z,

where εr is an arbitrarily small positive constant.

The aforementioned assumption states that there is enough space between the
obstacles and the workspace boundary as well as the obstacles themselves for the
agents to navigate among them.

3.3.2 Problem Statement
Due to the fact that the agents are not dimensionless and their sensing capabilities are
limited, the control protocol, except from achieving desired position formation (define
it by pij,des = −pji,des) and desired formation angles (define it by qij,des = −qji,des)
for all initially neighboring agents, it should also guarantee for all t ∈ R≥0 that
(i) the agents avoid collision with each other; (ii) all agents avoid collision with
obstacles; (iii) all agents avoid collision with the workspace boundary, (iv) all the
initial edges are maintained, and (v) the singularity of the Jacobian matrices J is
avoided.

Definition 3.1. (Feasible Formation) Given the initial neighboring sets Ni(x0), i ∈
V, defined by the initial poses x0 = x(0), the desired displacements xij,des =
[p>ij,des, q

>
ij,des]> = −xji,des, with j ∈ Ni(x0), that characterize a formation configu-

ration, are called feasible if the following holds:⋂
i∈V

{
xi ∈M : ‖xi − xj − xij,des‖ = 0,

diz,o(pi) > 0, ‖pi‖+ ri < rw,∀z ∈ Z, j ∈ Ni(x0)
}
6= ∅.

Formally, the control problem under the aforementioned constraints is formulated
as follows:

Problem 3.1. Consider N agents governed by the dynamics (3.1), operating in M,
with Z static obstacles, and initial properties:

• vi0 = 06×1,∀i ∈ V;

• −π2 < −θ̄ ≤ θi0 ≤ θ̄ <
π
2 ,∀i ∈ V;
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• ‖pi0‖+ ri < rw,∀i ∈ V;

• ‖pi0 − pj0‖ > dij,a,∀i, j ∈ V, i 6= j;

• ‖pi0 − poz‖ > diz,o,∀i ∈ V, z ∈ Z;

The subscript 0 denotes the initial value at t = 0. The aforementioned properties
concern singularity- and collision- free configurations at t = 0, where θ̄ is an
arbitrary constant in the open set (0, π2 ). Then, given non-empty initial neighboring
sets Ni(x0) 6= ∅, feasible inter-agent displacements pij,des, qij,des, ∀i ∈ V , j ∈ Ni(x0),
such that

dij,a < dij,a(pi, pj) < di,∀(pi, pj) ∈ {(pi, pj) ∈ R6 : ‖xi − xj − xij,des‖ = 0},

design decentralized control laws ui, such that for every i ∈ V and ∀t ∈ R≥0 the
following hold:

1. lim
t→∞

‖xi(t)− xj(t)− xij,des‖ ≤ µ,∀j ∈ Ni(x0);

2. ‖pi(t)− pj(t)‖ > dij,a,∀j ∈ V\{i}, t ∈ R≥0;

3. ‖pi(t)− poz‖ > diz,o,∀z ∈ Z, t ∈ R≥0;

4. ‖pi(t)‖+ ri < rw,∀t ∈ R≥0;

5. ‖pi(t)− pj(t)‖ < di,∀j ∈ Ni(x0), t ∈ R≥0;

6. −π2 < −θ̄ ≤ θi(t) ≤ θ̄ <
π
2 , ∀t ∈ R≥0;

where µ is an arbitrarily small positive constant for every i ∈ V.

The aforementioned specifications imply the following:
1) stands for formation control (both position and orientation);
2) stands for inter-agent collision avoidance;
3) stands for collision avoidance between the agents and the obstacles;
4) stands for collision avoidance between the agents and the boundary;
5) stands for connectivity maintenance of the initially connected agents and finally,
and
6) stands for the representation of singularities avoidance.

3.4 Control Law Design

In this section, a systematic solution to Problem 3.1 is introduced. Our overall
approach builds on designing a decentralized potential function for each agent that
captures all the desired control specifications. This potential function will then be
exploited by the decentralized controller of each agent. In particular, the following
analysis is performed:
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• The form of the proposed potential function along with its components is
described in Section 3.4.1.

• The proposed decentralized controllers that guarantee the satisfaction of all
the control specifications are provided in Section 3.4.2. The required stability
analysis is presented subsequently.

3.4.1 Decentralized Potential Functions

In order to solve the formation control problem with the collision- and singularity-
avoidance as well as connectivity maintenance, we construct a decentralized potential
function for each agent i ∈ V of the form:

ϕi(x) = γi(x) + 1
βi(x) , (3.4)

where:

• γi(x) ∈ R≥0 is the goal function that vanishes when agent i is at the desired
position and orientation with its neighbors.

• βi(x) ∈ R≥0 is an obstacle function that encodes collisions between agents and
obstacles, collisions between agents and the obstacle boundary, connectivity
losses between initially connected agents and singularities of the Jacobian
matrix J(qi); βi(x) becomes zero when one or more of the above situations
occurs.

The general form of the proposed potential function ϕi is motivated by the initial
work of navigation functions [68]. The function ϕi proposed in this work, however, is
not argued to be a navigation function. In the sequel, we describe the construction
of a function of the form (3.4).

γi - Goal Function

The function γi encodes the control objective of agent i, which is to achieve position
and orientation formation with its neighboring agents. In view of that, define the
goal function by:

γi(x) = 1
2

∑
j∈Ni(x0)

‖xi − xj − xij,des‖2. (3.5)

The function γi reaches its unique global minimum when both pi − pj = dij,des
and qi − qj = qij,des,∀i ∈ V, j ∈ Ni(x0), i.e., when both formation and orientation
alignment are achieved between all the initial neighboring agents. It should be noted



3.4. Control Law Design 27

that the gradient of γi with respect to xi, computed as

∇xiγi(x) =
∑

j∈Ni(x0)

(xi − xj − xij,des)

= Ni(x0)xi −
∑

j∈Ni(x0)

(xj + xij,des), (3.6)

can vanish in more configurations except for the desired one, at it is shown in the
following example.

Example 3.1. Consider a system with three agents V = {1, 2, 3}. Assume that 1 is
neighbor with both agents 2 and 3. Then, the goal function of agent 1 is given by:

γ1(x) = 1
2‖x1 − x2 − [2, 0, 0, 0, 0, 0]>‖2 + 1

2‖x1 − x3 − [3, 0, 0, 0, 0, 0]>‖2.

The latter results in ∇xiγi(x) = 2x1 −
(
x2 + x3 + [5, 0, 0, 0, 0, 0]>

)
, which vanishes

for any x1, x2, x3 that satisfy 2x1 − x2 − x3 = [5, 0, 0, 0, 0, 0]>. Clearly, this can
happen in configurations other than the desired one. For example, consider the
configuration:

x?1 = [1, 0, 0, 0, 0, 0]>, x?2 = [0, 0, 0, 0, 0, 0]>, x?3 = [−3, 0, 0, 0, 0, 0]>.

It holds that

γ1(x?) 6= 0,∇x1γ1(x)
∣∣∣
x=x?

= 0. (3.7)

βi - Obstacle Function

The function βi, encodes all inter-agent collisions, collisions between the agents
and obstacles, collisions with the boundary of the workspace, connectivity between
initially connected agents and singularities of the Jacobian matrix J(qi). First, for
each agent i, we define the functions ηij,a, ηij,c : R2 → R, ηiz,o : R→ R where:

ηij,a(pi, pj) = d2
ij,a(pi, pj)− d2

ij,a, (3.8a)
ηiz,o(pi) = d2

iz,o(pi)− d2
iz,o, (3.8b)

ηij,c(pi, pj) = d2
i − d2

ij,a(pi, pj). (3.8c)

The subscripts j and z correspond to agent j ∈ V\{i} and obstacle z ∈ Z, re-
spectively, whereas the subscripts c stands for connectivity. Let us also define the
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functions bij,a, biz,o, bij,c : R→ [0, κ], biw : R→ R≥0, bJi : [−π2 ,
π
2 ]→ [0, 1], where:

bij,a(y) =
{
φi,a(y), 0 ≤ y < d2

i − d
2
ij,a,

κ, d2
i − d

2
ij,a ≤ y,

(3.9a)

biz,o(y) =
{
φi,o(y), 0 ≤ y < d2

i − d
2
iz,o,

κ, d2
i − d

2
iz,o ≤ y,

(3.9b)

bij,c(y) =


0, y < 0,
φi,c(y), 0 ≤ y < d2

i − d
2
ij,a,

κ, d2
i − d

2
ij,a ≤ y,

(3.9c)

biw(y) =
[
(rw − ri)2 − y2]2 , (3.9d)

bJi(y) = cos2(y). (3.9e)
The functions bij,a, biz,o, bij,c correspond to inter-agent collision, collision with
obstacles and connectivity maintenance, respectively, for agent i ∈ V, while the
functions biw, bJi correspond to collision with the workspace boundary and repre-
sentation singularities. Each of these terms becomes zero when there is a collision, a
connectivity break or a representation singularity. Note that all the aforementioned
functions use only local information depending on the sensing range di of agent i.
The functions φi,a, φi,o and φi,c are increasing functions, appropriately selected to
guarantee that the functions bij,a, biz,o and bij,c respectively, are twice continuously
differentiable everywhere, with φi,a(0) = φi,o(0) = φi,c(0) = 0, ∀i ∈ V. Moreover,
κ is a positive constant to be defined later. An example of a function bij,a with
d2
i − d

2
ij,a = 5 and φi,a(y) = 0.008y3 − 0.12y2 + 0.6y, is depicted in Figure 3.2. We

can now choose the function βi as the following product for every i ∈ V:

βi(x) = bJi(θi)biw(‖pi‖2)

 ∏
j∈V\{i}

bij,a(ηij,a(pi, pj))


[ ∏
z∈Z

biz,o(ηiz,o(pi))
] ∏

j∈Ni(x0)

bij,c(ηij,c(pi, pj))

 . (3.10)

The aforementioned function becomes zero when one or more of the desired specifi-
cations is violated.

3.4.2 Control Design and Stability Analysis
In this section, we design controllers ui such that all the specifications of Problem
3.1 are met. First, let us define the augmented vectors:

ζi = [γi,
1
βi
, v>i ]> ∈ R8, (3.11a)

ζ = [ζ>1 , . . . , ζ>N ]> ∈ R8N . (3.11b)
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Figure 3.2: The function bij,a(y), for d2
i − d2

ij,a = 5 and φi,a(y) = 0.008y3 − 0.12y2 +
0.6y.

Next, define the following open sets:

Di =
{

(x, v) ∈MN × R6N : ‖pi − pj‖ > dij,a,∀j ∈ V,

‖pi − pj‖ < di,∀j ∈ Ni(x0), ‖pi − poz‖ > diz,o,∀z ∈ Z,

pi ∈W, θi ∈ [−θ̄, θ̄]
}
, i ∈ V, (3.12a)

D =
⋂
i∈V
Di, (3.12b)

X =
{
ζ ∈ R8N : βi > 0,∀i ∈ V}, (3.12c)

which, according to Assumption 3.1, are connected. Define also a positive constant:

r0 = max{r ∈ R>0 : B(08N×1, r0) ⊆ X}. (3.13)

Note that the functions γi, βi have the same form for all the agents, i.e., γi(x) consists
of the formation errors of agent i and βi(x) consists of terms corresponding to θi and
distances associated with pi and its neighbors. Therefore, since from Assumption
3.1 each agent i ∈ V knows xj , Ni(x), xj∗ , Nj(x),∀j∗ ∈ Nj(x), j ∈ Ni(x) at a
configuration x, it can also compute ϕj(x) and ∇xiϕj(x),∀j ∈ Ni(x), by off-line
transmission of some constant terms required for βj(x), like the radii rj and dj and
the functions φj,a, φj,o, φj,c, φj,γ .
Design now the decentralized control laws ui : Di → R6, i ∈ V as:

ui(x, v) = gi(xi)− [J(qi)]> λi(x) + vi

(
− γi(x)2

σ2 − 1
σ2βi(x)2 −

‖vi‖2

σ2 − 1
N
− 1
)
,

(3.14)

where σ is a positive and finite controller gain to be defined later. The function λi
is defined by:

λi(x) = ∇xi

ϕi(x) +
∑

j∈Ni(x)

ϕj(x)


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= ∇xi

kγi(x) + k
∑

j∈Ni(x)

γj(x) + 1
βi(x) +

∑
j∈Ni(x)

1
βj(x)


= kNi(x0)∇xiγi(x) +∇xi

 1
βi(x) +

∑
j∈Ni(x)

1
βj(x)

 . (3.15)

Assumption 3.3. We assume here that any equilibrium points of the closed loop
system (5.1) in the set

M = {ζ ∈ X : ‖v‖ = 0, ‖ζ‖ ≥ σ}, (3.16)

are unstable, where σ as defined in (3.14), as well as the system does not start in
these equilibrium points.

We now state the following theorem, which summarizes the main results of this
chapter.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2 and 3.3 hold and let the initial
states (x0, v0) such that ζ0 ∈ B(08N×1, r0), as r0 defined in (3.13). Then, the
decentralized control protocol (3.14) guarantees that limt→∞‖xi(t)−xj(t)−xij,des‖ ≤
µ, ∀j ∈ Ni(x0), i ∈ V, ensuring that βi(x(t)) > 0, ∀t ∈ R≥0, i ∈ V and the
boundedness of all closed loop signals, providing, thus, a solution to Problem 3.1.

Proof. Consider the positive definite continuously differentiable function L : D →
R≥0 for the system (5.1):

L(ζ) =
∑
i∈V

{
ϕi + 1

2v
>
i Mi(xi)vi

}
, (3.17)

which satisfies α1(‖ζ‖) ≤ L(ζ) ≤ α2(‖ζ‖), for some functions α1, α2 ∈ K. By
defining Ld : D → R, with Ld , [∇ζL(ζ)]>ζ̇, we obtain that:

Ld(ζ) =
∑
i∈V

(∇xiϕi)
>
ẋi +

∑
j∈Ni(x)

(
∇xjϕi

)>
ẋj

+
∑
i∈V

v>i

[
Miv̇i + 1

2M
d
i vi

]

=
∑
i∈V

(∇xiϕi)
>
J(qi)vi +

∑
j∈Ni(x)

(
∇xjϕi

)>
J(qj)vj


+
∑
i∈V

v>i

[
−Civi − gi + ui + 1

2M
d
i vi

]

=
∑
i∈V

{
v>i [J(qi)]>∇xiϕi +

∑
j∈Ni(x)

v>j [J(qj)]>∇xjϕi

}

+ 1
2
∑
i∈V

v>i
[
Md
i − 2Ci

]
vi +

∑
i∈V

v>i [ui − gi] .
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For the form of the derivations that are appearing in the later equality, we refer the
reader to Appendix A. By employing the property (3.3) of Remark 1, one obtains:

Ld =
∑
i∈V

{
v>i

[J(qi)]>
∇xiϕi +∇xi

∑
j∈Ni(x)

ϕj

}+
∑
i∈V

v>i [ui − gi]

=
∑
i∈V

{
v>i

[
ui − gi + [J(qi)]> λi(x)

]}
, (3.18)

where λi as defined in (3.15). By defining Λ , min
k∈V
‖vk‖2 ≤ ‖vi‖, and substituting

the controller ui from (3.14), the latter becomes:

Ld(ζ) =
∑
i∈V
‖vi‖2

(
−γ

2
i

σ2

)
+
∑
i∈V
‖vi‖2

(
− 1
σ2β2

i

)
+
∑
i∈V
‖vi‖2

(
−‖vi‖

2

σ2

)
+
∑
i∈V
‖vi‖2

(
− 1
N

)
−
∑
i∈V
‖vi‖2

≤ Λ
∑
i∈V

(
−‖γi‖

2

σ2

)
+ Λ

∑
i∈V

(
− 1
σ2β2

i

)
+ Λ

∑
i∈V

(
−‖vi‖

2

σ2

)
+ Λ− ‖v‖2

≤ −‖v‖2 + Λ
[∑
i∈V

(
−‖γi‖

2

σ2 − 1
σ2β2

i

− ‖vi‖
2

σ2

)
+ 1
]

= −‖v‖2 + σ2Λ
[
−‖ζ‖2 + σ2] . (3.19)

The latter implies that Ld ≤ 0, when ‖ζ‖ ≥ σ. The control gain σ > 0 is designed
sufficiently small such that

σ < α−1
2 (α1(r0)).

Since the equilibrium points inM are assumed to be unstable, we have the following.
Since ζ0 ∈ B(08N×1, r0), by invoking Theorem 2.2 from Chapter 2, we conclude
that there exists a K∞ function α3 and a positive time T such that for every initial
condition satisfying ‖ζ0‖ ≤ α−1

2 (α1(r0)), the solution of the closed loop system
satisfies the following:

‖ζ(t)‖ ≤ α3(‖ζ0‖),∀ 0 ≤ t ≤ T,
‖ζ(t)‖ ≤ ζ̄ , α−1

1 (α2(σ)),∀t > T. (3.20)

Hence, we conclude that ζ(t) stays bounded for all t ∈ R≥0 and, thus the following
holds:

1
βi(x(t)) ≤M , max

{
[α3(‖ζ0‖)]2 ,

[
α−1

1 (α2(rσ))
]2}

,



32 Formation Control of Multiple Rigid Bodies

or equivalently,

βi(x(t)) ≥ 1
M

> 0,

i.e., ∀t ∈ R≥0, i ∈ V . Hence, inter-agent collisions, collisions between the agents and
the obstacles / workspace boundary as well as connectivity losses and singularities are
avoided. Furthermore, by tuning the parameter σ, we can guarantee that the bound
ζ̄ in (3.20) is small enough in order to hold that lim

t→∞
‖xi(t)− xj(t)− xij,des‖ ≤ µ,

∀i ∈ V, j ∈ Ni(x0). Note that this also implies that βi(xi(t)) ≤ µ, ∀t ≥ 0. In order
to guarantee that such configurations exist, we can set the value for κ in (3.9)
sufficiently large, according to the desired xij,des.

Hence, by designing ui as in (3.14), we guarantee that ‖ζ(t)‖ ≤ ζ̄. Further-
more, the obstacle functions βi are proved to be always bounded, which guarantees
inter-agent collision avoidance, collision avoidance between the agents and the obsta-
cles/workspace boundary, connectivity maintenance between the initially connected
agents, and representation singularity avoidance. Moreover, from (3.20) we conclude
that all closed loop signals remain bounded, which leads to the conclusion of the
proof.

Remark 3.3. Assumption 3.3 forms an instability claim that concerns a subset of
initial configurations and has not been proved yet, constituting an area of current
research. A potential solution lies in the introduction of gain parameters in the
potential field.

3.5 Simulation Results

To demonstrate the efficiency of the proposed control protocol, we consider a
simulation example with N = 4, V = {1, 2, 3, 4} spherical agents of the form (3.1),
with ri = 0.25m and di = 5m, ∀i ∈ {1, . . . , 4}. The initial conditions are set to

p1(0) = [−3, 0, 5]> m,
p2(0) = [−1, 4, 4]> m,
p3(0) = [−3, 4, 2]> m,
p4(0) = [−4, 3, 6]> m,
q1(0) = q2(0) = q3(0) = q4(0) = [0, 0, 0]> rad.

which imply the initial neighboring sets

N1(0) = {2},N2(0) = {1, 3, 4},N3(0) = {2, 4},N4(0) = {2, 3}.
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The desired formation is defined by the feasible displacements

p12,des = −p21,des = [−1,−1,−2]> m,
p23,des = −p32,des = [−2,−3, 0]> m,
p24,des = −p42,des = [−1,−2, 0]> m,
p34,des = −p43,des = [1, 1, 0]> m,

q12,des = −q21,des =
[
−π4 , 0,−

π

4

]>
rad,

q23,des = −q32,des =
[
− π

12 , 0, 0
]>

rad,

q24,des = −q42,des =
[
−π8 , 0, 0

]>
rad,

q34,des = −q43,des =
[

5π
24 , 0, 0

]>
rad.

We consider a workspace of radius rw = 10m containing two spherical static
obstacles at po1 = [−3, 3, 5]>m, po2 = [−1, 1, 3]>m with radii ro1

= ro2
= 0.75m. An

illustration of the workspace with the agents at t = 0 is given in Figure 3.3. The
controller parameter were chosen as σ = 0.3. The simulation results are depicted in
Figure 3.4-3.7 for t ∈ [0, 30]sec. In particular, Figure 3.5 shows the evolution of the
goal functions γi,∀i ∈ V, which are decreasing to zero, whereas Figure 3.6 depicts
the obstacle functions βi, ∀i ∈ V which stays always strictly positive. Furthermore,
the control inputs are shown in Figure 3.4. Finally, the navigation of the agents in
the workspace is pictured in Figure 3.7. As proven in the theoretical analysis, the
formation is successfully achieved and all the specifications of Problem 3.1 are met.

3.6 Conclusions

In this chapter we proposed a potential function- based decentralized control protocol
for multi-agent systems which guarantees formation control with inter-agent collision
avoidance, collision avoidance between the agents and the obstacles/workspace
boundary, connectivity maintenance as well as singularity avoidance of multiple
rigid bodies. Simulation results have verified the validity of the proposed control
design approach.
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Figure 3.7: The motion of the agents in the workspace for t ∈ [0, 30]sec.



Chapter 4

Timed Constrained High-Level Planning for
Multi-Agent Systems

In this chapter the problem of cooperative task planning of multi-agent systems
when timed constraints are imposed to the system is investigated. We consider timed
constraints given by Metric Interval Temporal Logic (MITL). We propose a method
for automatic control synthesis in a two-stage systematic procedure. Under the
proposed method, it is guaranteed that all the agents satisfy their own individual
task specifications as well as the team satisfies a team task specification.

4.1 Introduction

The specification language that has extensively been used to express desired tasks
for robots is Linear Temporal Logic (LTL) (see, e.g., [82–87]). LTL has proven a
valuable tool for controller synthesis, because it provides a compact mathematical
formalism for specifying desired behaviors of a system. There is a rich body of
literature containing algorithms for verification and synthesis of multi-agent systems
under temporal logic specifications [88–90]. A three-step hierarchical procedure to
address the problem of multi-agent systems under LTL specifications is described
as follows [91–97]: first the dynamics of each agent is abstracted into a discrete
transition system using abstractions methods. Second, by invoking ideas from formal
verification, a discrete plan that meets the high-level tasks is synthesized for each
agent. Third, the discrete plan is translated into a sequence of continuous controllers
for the original continuous dynamical system of each agent.

Explicit time constraints in the system modeling have been included e.g., in
[84], where a method of automated planning of optimal paths of a group of agents
satisfying a common high-level mission specification was proposed. The mission was
given in LTL and the goal was the minimization of a cost function that captures the
maximum time between successive satisfactions of the formula. Authors in [98, 99]
used a different approach, representing the motion of each agent in the environment
with a timed automaton. The composition of the team automaton was achieved

37
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through synchronization and the UPPAAL verification tool ([100]) was utilized for
specifications given in Computational Tree Logic (CTL). In the same direction,
authors in [101] modeled the multi-robot framework with timed automata and
weighted transition systems considering LTL specifications and then, an optimal
motion of the robots satisfying instances of the optimizing proposition was proposed.

Most of the previous works on multi-agent planning consider temporal properties
which essentially treat time in a qualitative manner. For real applications, a multi-
agent team might be required to perform a specific task within a certain time bound,
rather than at some arbitrary time in the future (quantitative manner). Controller
synthesis under timed specifications has been considered in [102–107]. In [102], the
authors addressed the problem of designing high-level planners to achieve tasks for
switching dynamical systems under Metric Temporal Logic (MTL) specification
and in [103], the authors utilized a counterexample-guided synthesis for cyber-
physical systems subject to Signal Temporal Logic (STL) specifications. In [106], the
authors focused on motion planning based on the construction of an efficient timed
automaton from a given MITL specifications. In [104], an optimal control problem
for continuous-time stochastic systems subject to objectives specified in MITL was
studied, whereas in [105], a framework that enables on-line planning for robotic
systems in dynamic environments under MTL specifications is presented. In [107],
the MTL formula for a single-agent was translated into linear constraints and a
Mixed Integer Linear Programming (MILP) problem was solved. However, all these
works are restricted to single-agent planning and cannot be extended to multi-agent
systems in a straightforward way. The multi-agent case has been considered in [108],
where the vehicle routing problem was addressed, under Metric Temporal Logic
(MTL) specifications. The corresponding approach does not rely on automata-based
verification, as it is based on a construction of linear inequalities and the solution of
a Mixed-Integer Linear Programming (MILP) problem.

Motivated by the above, in this Chapter, we aim at designing an automated
planning procedure for a team of agents. The agents are assigned with an individual,
independent timed temporal specification each and, at the same time, a single
global team specification. This constitutes the first step towards including time
constraints to temporal logic-based multi-agent control synthesis. We consider a
quantitative logic called Metric Interval Temporal Logic (MITL) [33] in order to
specify explicit time constraints. The proposed solution is fully automated and
completely desynchronized in the sense that a faster agent is not required to stay in
a region and wait for the slower one. It is decentralized in handling the individual
specifications and centralized only in handling the global team specification. To the
best of the author’s knowledge, a work that address the cooperative task planning
for multi-agent systems under individual and global timed linear temporal logic
specifications has not been proposed before.

The remainder of the chapter is structured as follows. Section 4.2 provides the
model of the multi-agent system, the task specification, several motivation examples
as well as the formal problem statement. Section 4.3 discusses the technical details of
the solution. Section 4.4 is devoted to an illustrative example. Finally, the conclusions
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are discussed in Section 4.5.

4.2 Problem Formulation

4.2.1 System Model
Consider a multi-agent team composed ofN agents operating in a bounded workspace
W0 ⊆ Rn. Let V = {1, . . . , N} denote the index set of the agents. We assume that
the workspace W0 is partitioned into a finite number (assume W ) of regions of
interest π1, . . . , πW where

W0 =
⋃
k∈W

πk and πk ∩ πk′ 6= ∅,∀ k 6= k′ with k, k′ ∈ W, (4.1)

for the index set W = {1, . . . ,W}. We denote by πik the agent i being at region πk,
where i ∈ V, k ∈ W. In this work, we focus on interaction and high-level control
strategies rather than on nonlinear models, and we assume that the dynamics of
each agent is given by a single integrator

ẋi = ui, ui ∈ U , i ∈ V, (4.2)

where U is a set of input constraints. The partitioned environment (4.1) is a
discretization that allows us to control the agents with dynamics (4.2) using finite
models such as finite transition systems (e.g., [92, 109–111]). We define a weighted
transition system (see Definition 4.1) so that:

• if there exists a controller ui, i ∈ V such that agent i can be driven from any
point within the region πi to a neighboring region πj , then we allow for a
transition between the respective system states, and

• the weight of each transition estimates the time each agent needs in order
to move from one region to another. In particular, the travel time is here
determined as the worst-case shortest time needed to travel from an arbitrary
point of the current region to the boundary of the following region. This
estimate is indeed conservative, however, it is sufficient for specifications that
we are generally interested in within multi-agent control. Namely, it is suitable
for scenarios where tasks are given deadlines and upper rather than lower
bound requirements are associated with events along the agents’ runs.

Definition 4.1. The motion of each agent i ∈ V in the workspace is modeled by a
WTS Ti = (Πi,Πinit

i ,−→i, di,Σi, Li) where

• Πi =
{
πi1, π

i
2, . . . , π

i
W

}
is the set of states of agent i. Any state of an agent i

can be denoted as πik ∈ Πi for i ∈ V, k ∈ W. The number of states for each
agent is |Πi| = W .
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• Πinit
i ⊆ Πi is the initial states of agent i, i.e. the set of regions where agent i

may start.

• −→i⊆ Πi×Πi is the transition relation. For example, by π3
3 −→3 π

3
5 we mean

that agent 3 can move from region π3 to region π5.

• di :−→i→ T is a map that assigns a positive weight (duration) to each
transition. For example, d2(π2

2 , π
2
5) = 0.7, where π2

2 −→2 π
2
5 , means that agent

2 needs at most 0.7 time units to move from any point of region π2 to the
boundary of the neighboring region π5.

• Σi is a finite set of atomic propositions known to agent i. Without loss of
generality, we assume that Σi ∩ Σi′ = ∅ for all i 6= i′ ∈ V.

• Li : Πi → 2Σi is a labeling function that assigns to each state πik ∈ Πi, k ∈ W,
a subset of atomic propositions Σi that are satisfied when agent i is in region
πk.

Individual Timed Runs and Words

The behaviors of the individual agents can be captured through their timed runs
and timed words. The timed run

rti = (ri(0), τi(0))(ri(1), τi(1))(ri(2), τi(2)) . . . ,

of each WTS Ti, i ∈ V and the corresponding timed word

w(rti) = (Li(ri(0)), τi(0))(Li(ri(1)), τi(1))(Li(ri(2))), τi(2)) . . . ,

are defined by using the terminology of Definition 2.11.

Remark 4.1. Note that in this chapter, we omit the set of actions Act from the
definition of WTS, the definition of timed runs and timed words, as they are defined
in 2.10, 2.11.

Collective Timed Run and Word

At the same time, the agents form a team and we are interested in their global,
collective behaviors, which we formalize through the following definition.

Definition 4.2 (Collective Run of the Agents). Let rt1, . . . , rtN be individual timed
runs of the agents 1, . . . , N , respectively, as defined above. Then, the collective timed
run

rG = (rG(0), τG(0))(rG(1), τG(1))(rG(2), τG(2)) . . . ,

of the team of agents is defined inductively as follows:

1. (rG(0), τG(0)) = ((r1(0), . . . , rN (0)), τG(0)).
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2. Let (rG(j), τG(j)) = ((r1(j1), . . . , rN (jN )), τG(j)), where j ≥ 0 is an index for
the current state and time stamp of the collective timed run. Then, the next
state and time stamp (rG(j+ 1), τG(j+ 1)) = ((r1(z1), . . . , rN (zN )), τG(j+ 1))
are given by the following rules:

• ` = argmin
i∈V

{τi(ji + 1)}.

• τG(j + 1) = τ`(j` + 1).

• ri(zi) =
{
r`(j` + 1) if i = `

ri(j`) if i 6= `.

Intuitively, given the current states r1(j1), . . . , rN (jN ) and the next states r1(j1 +
1), . . . , rN (jN + 1) of the individual agents at time τG(j), ` is the index of the agent
i who will finish its current transition from r`(j`) to r`(j` + 1) the soonest amongst
of all the agents. The time of agent `’s arrival to its next state r`(j` + 1) becomes
the new time stamp τG(j + 1) of the collective timed run. The next state of the
collective timed run reflects that each agent i which cannot complete its transition
from ri(jk) to ri(jk + 1) before τG(j + 1) remains in ri(ji).

In what follows, we write: rtG = (rG(0), τG(0))(rG(1), τG(1)) . . . , where

rG(j) = (r1(j1), . . . , rN (jN )), j, ji ≥ 0, i ∈ V,

denotes the collective timed run.

Definition 4.3. We define the global set of atomic propositions ΣG =
⋃
i∈V

Σi and

for every state rG(j) = (r1(j1), . . . , rN (jN )) of a collective timed run, where j, ji ≥ 0
and i ∈ V, we define the labeling function LG : Π1 × · · · ×ΠN → ΣG as

LG(rG(j)) =
N⋃
i∈V

Li(ri(ji)).

Therefore, a collective timed run rtG naturally produces a timed word

wtG = (LG(rG(0)), τG(0))(LG(rG(1)), τG(1)) . . . ,

over the set ΣG.

Example 4.1. Consider N = 2 robots operating in a workspace withW = π1∪π2∪
π3,W0 = 3 and V = {1, 2} modeled as the WTSs illustrated in Figure 4.1. Let Σ1 =
{green}, and Σ2 = {red}. The labeling functions are L1(π1

1) = {green}, L1(π1
2) =

L1(π1
3) = ∅, and L2(π2

1) = L2(π2
2) = ∅, L2(π2

3) = {red}.
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Figure 4.1: Two WTSs T1, T2 representing two agents in W with Π1 = {π1
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1
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1 = {π1

1}, Π2 = {π2
1 , π

2
2 , π

2
3},Πinit

2 = {π2
1}. The transitions are depicted with arrows

which are annotated with the corresponding weights.

A timed run for each agent is given as follows:

rt1 =(r1(0) = π1
1 , τ1(0) = 0.0)(r1(1) = π1

2 , τ1(1) = 1.0)
(r1(2) = π1

3 , τ1(2) = 2.5)(r1(3) = π1
2 , τ1(3) = 3.0)

(r1(4) = π1
1 , τ1(4) = 5.0) . . .

rt2 =(r2(0) = π2
1 , τ2(0) = 0.0)(r2(1) = π2

2 , τ2(1) = 2.0)
(r2(2) = π2

3 , τ2(2) = 2.5)(r2(3) = π2
2 , τ2(3) = 4.5)

(r2(4) = π2
3 , τ2(4) = 5.0) . . .

Given rt1 and rt2 the collective run rG is given according to Definition 4.2 as follows:

rtG =((π1
1 , π

2
1)︸ ︷︷ ︸

rG(0)

, τG(0) = 0.0)((π1
2 , π

2
1)︸ ︷︷ ︸

rG(1)

, τG(1) = 1.0)

((π1
2 , π

2
2)︸ ︷︷ ︸

rG(2)

, τG(2) = 2.0)((π1
3 , π

2
3)︸ ︷︷ ︸

rG(3)

, τG(3) = 2.5)

((π1
2 , π

2
3)︸ ︷︷ ︸

rG(4)

, τG(4) = 3.0)((π1
2 , π

2
2)︸ ︷︷ ︸

rG(5)

, τG(5) = 4.5)

((π1
1 , π

2
3)︸ ︷︷ ︸

rG(6)

, τG(6) = 5.0) . . .

The produced collective timed word is

wtG =({green}, 0.0)(∅, 1.0)(∅, 2.0)({red}, 2.5)
({red}, 3.0)(∅, 4.5)({green, red}, 5.0) . . . .

4.2.2 Specification
Several temporal logics have been designed to express timed properties of real-time
systems, such as MTL [112] that extends the until operator of LTL with a time
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interval. Here, we consider a fragment of MTL, called MITL (see Section 2.2) which
has been proposed in [33]. Namely, we utilize its point-wise semantics and interpret
its formulas over timed runs.

Local Agent’s Specification

Each agent i ∈ V is given an individual, local, independent specification in the form
of a MITL formula ϕi over the set of atomic propositions Σi. The satisfaction of ϕi
is decided from the agent’s own perspective, i.e., on the timed run rti .

Global Team Specification

In addition, the team of agents is given a global team specification, which is a
MITL formula ϕG over the set of atomic propositions ΣG. The team specification
satisfaction is decided on the collective timed run rtG.

Example 4.1 (Continued). Recall the two agents from Example 4.1. Each of the
agents is given a local, independent, specification and at the same time, the team is
given an overall goal that may require collaboration or coordination. Examples of
local specification formulas are ϕ1 = �♦≤10(green) and ϕ2 = �(red ⇒©�≤5(¬red))
stating that “The green region is periodically visited with at most 10 time units
between two consecutive visits” and “Whenever a red region is visited, it will
not be visited for the following 5 time units again”, respectively. While ϕ1 is
satisfied on rt1, ϕ2 is not satisfied on rt2. An example of the global specification is
ϕG = �♦≤5(green ∧ red) that imposes requirement on the agents’ collaboration;
it states that agents 1 and 2 will periodically and simultaneously visit the green
and the red region, respectively, with at most 5 time units between two consecutive
visits.

4.2.3 Problem Statement
Problem 4.1 (Run Synthesis). Given N agents governed by dynamics as in (4.2),
a task specification MITL formula ϕG for the team of robots, over a set of atomic
propositions ΣG and N local task specifications ϕk over Σi, i ∈ V, synthesize a
sequence of individual timed runs rt1, . . . , rtN such that the following hold(

rtG |= ϕG
)
∧
(
rt1 |= ϕ1 ∧ · · · ∧ rtN |= ϕN

)
. (4.3)

Though it might seem that the satisfaction of the individual specifications
ϕ1, . . . , ϕN can be treated as the satisfaction of the formula

∧
i∈V

ϕi on the collective

timed run rtG, this is generally not the case, as demonstrated through the following
example:

Example 4.1 (Continued). Recall the two agents from Example 4.1 and a local
specification ϕ2 = �(red ⇒©�≤2(¬red)). While this specification is satisfied on rt2
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since w(rt2) = (∅, 0.0)(∅, 2.0)({red}, 2.5)(∅, 4.5)({red}, 5.0) . . . , it can be easily seen
that it is not satisfied on rtG.

Formally, we have

rtG |=
∧
k∈V

ϕk < rt1 |= ϕ1 ∧ · · · ∧ rtN |= ϕN . (4.4)

Hence, Problem 4.1 may not be treated in a straightforward, fully centralized way.
We propose a two-stage solution that first pre-computes all timed runs of the
individual agents in a decentralized way and stores them efficiently in weighted
transition systems enhanced with a Büchi acceptance condition. Second, these are
combined and inspected with respect to guaranteeing the satisfaction of the team
specification by the collective timed run.

4.3 Proposed Solution

In this section, we introduce a systematic solution to Problem 4.1. Our overall
approach builds on the following steps:

1. We construct TBAs Ai, i ∈ V and AG that accept all the timed words
satisfying the specification formulas ϕi, i ∈ V and ϕG, respectively (Section
4.3.1).

2. We construct a local Büchi WTS T̃i = Ti ⊗Ai, for all i ∈ V. The accepting
timed runs of T̃i are the timed runs of the Ti that satisfy the corresponding
local specification formula ϕi, i ∈ V (Section 4.3.2).

3. We construct a product Büchi WTS TG = T̃1⊗· · ·⊗T̃N such that its timed runs
are collective timed runs of the team and their projections onto the agents’
individual timed runs are admissible by the local Büchi WTSs T̃1, . . . , T̃N
respectively (Section 4.3.3).

4. We construct a global Büchi WTS T̃G = TG⊗AG. The accepting timed runs of
the T̃G are the timed runs of the TG that satisfy the team formula ϕG (Section
4.3.4).

5. We find an accepting timed run r̃tG of the global Büchi WTS T̃G and project
it onto timed runs of the product Büchi WTS TG, then onto timed runs of the
local Büchi WTSs T̃1, . . . , T̃N , and finally onto individual timed runs rt1, . . . , rtN
of the original WTSs T1, . . . , TN . By construction, rt1, . . . , rtN are guaranteed
to satisfy ϕ1, . . . , ϕN , respectively, and furthermore rtG satisfies ϕG (Section
4.3.5).
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4.3.1 Construction of TBAs
As stated in Section 2.3, every MITL formula ϕ can be translated into a language
equivalent TBA. Several approaches are proposed for the translation e.g., [33, 37,
38, 113]. Here, we translate each local specification ϕi, where i ∈ V into a TBA
Ai = (Si, Sinit

i , Ci, Ii, Ei,Fi,Σi,Li), and the global specification ϕG into a TBA
AG = (SG, Sinit

G , CG, IG, EG,FG,ΣG,LG).

4.3.2 Construction of the local Büchi WTSs T̃1, . . . , T̃N

Definition 4.4. Given a WTS Ti = (Πi,Πinit
i ,−→i,Σi, Li, di), and a TBA Ai =

(Si, Sinit
i , Ci, Ii, Ei, Fi,Σi,Li) with Ci clocks and Cmax

i being the largest constant
appearing in Ai. Then, their local Büchi WTS T̃i = Ti ⊗Ai = (Qi, Qinit

i ,  i, d̃i,
F̃i, Σi, L̃i) is defined as follows:

• Qi ⊆ {(ri, si) ∈ Πi × Si : Li(ri) = Li(si)} × TCi∞ .

• Qinit
i = Πinit

i × Sinit
i × {0}Ci .

• q i q
′ iff

◦ q = (r, s, ν1, . . . , νCi) ∈ Qi,
q′ = (r′, s′, ν′1, . . . , ν′Ci) ∈ Qi,
◦ r −→i r

′, and
◦ there exists γ,R, such that (s, γ, R, s′) ∈ Ei, ν1, . . . , νCi |= γ, ν′1, . . . ,
ν′Ci |= Ii(s′), and for all i ∈ {1, . . . , Ci}

ν′i =


0, if ci ∈ R
νi + di(r, r′), if ci 6∈ R and

νi + di(r, r′) ≤ Cmax
i

∞, otherwise.

Then d̃i(q, q′) = di(r, r′).

• F̃i = {(ri, si, ν1, . . . , νCi) ∈ Qi : si ∈ Fi}.

• L̃i(ri, si, ν1, . . . , νCi) = Li(ri).

Each local Büchi WTS T̃i, i ∈ V, is in fact a WTS with a Büchi acceptance
condition F̃i. A timed run of T̃i can be written as r̃ti = (qi(0), τi(0))(qi(1), τi(1)) . . .
using the terminology of Definition 2.11. It is accepting if qi(j) ∈ F̃i for infinitely
many j ≥ 0. An accepting timed run of T̃i projects onto a timed run of Ti that
satisfies the local specification formula ϕi by construction. Formally, the following
lemma, whose proof follows directly from the construction and the principles of
automata-based LTL model checking (see, e.g., [30]), holds:
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Lemma 4.1. Consider an accepting timed run r̃ti = (qi(0), τi(0))(qi(1), τi(1)) . . .
of the local Büchi WTS T̃i defined above, where qi(j) = (ri(j), si(j), νi,1, . . . , νi,Ci)
denotes a state of T̃i, for all j ≥ 1. The timed run r̃ti projects onto the timed
run rti = (ri(0), τi(0))(ri(1), τi(1)) . . . of the WTS Tk that produces the timed word
w(rti) = (Li(ri(0)), τi(0))(Li(ri(1)), τi(1)) . . . accepted by the TBA Ai via its run
ρi = si(0)si(1) . . .. Vice versa, if there exists a timed run rti = (ri(0), τi(0))(ri(1),
τi(1)) . . . of the WTS Ti that produces a timed word

w(rti) = (Li(ri(0)), τi(0))(Li(ri(1)), τi(1)) . . . ,

accepted by the TBA Ai via its run ρi = si(0)si(1) . . . then, there exists the ac-
cepting timed run r̃ti = (qi(0), τi(0))(qi(1), τi(1)) . . . of T̃i, where qi(j) denotes
(ri(j), si(j), νi,1(j), . . . , νi,Ci(j)) in T̃i.

4.3.3 Construction of the product Büchi WTS TG

In this section, we aim to construct a finite product WTS TG whose timed runs
represent the collective behaviors of the team and whose Büchi acceptance condition
ensures that the accepting timed runs account for the local specifications. In other
words, TG is a product of all the local WTS T̃i built above. In the construction of
TG, we need to specifically handle the cases when transitions of different agents are
associated with different time durations, i.e, different transition weights. To this end,
we introduce a vector b = (b1, . . . , bN ) ∈ TN . Each element of the vector is a rational
number bi ∈ T, i ∈ V which can be either 0, when the agent i has just completed its
transition, or the time elapsed from the beginning of the agent’s current transition,
if this transition is not completed yet. Then, the state of the team of agents is
written in the form qG = (q1, . . . , qN , b1, . . . , bN , `) where qi is a state of T̃i, for all
i ∈ V, and ` ∈ V has a special meaning in relation to the acceptance condition of
TG that will become clear shortly. Taking the above into consideration we define
the global model TG as follows:

Definition 4.5. Given N local Büchi WTSs T̃1, . . . , T̃N from Definition 4.4, their
product Büchi WTS TG = T̃1 ⊗ . . . ⊗ T̃N = (QG, Qinit

G ,−→G, dG, FG,ΣG, LG) is
defined as follows:

• QG ⊆ Q1 × · · · ×QN × TN × {1, . . . , N}.

• Qinit
G = Qinit

1 × . . .×Qinit
N × {0}N × {1}.

• qG −→G q′G iff

◦ qG = (q1, . . . , qN , b1, . . . , bN , `) ∈ QG,
q′G = (q′1, . . . , q′N , b′1, . . . , b′N , `′) ∈ QG,

◦ ∃ q′′i ∈ Qi : qi i q
′′
i , for some i ∈ V,
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◦

b′i =


0, if bi + dmin = d̃i(qi, q′′i )

and q′i = q′′i
bi + dmin, if bi + dmin < d̃i(qi, q′′i )

and q′i = qi

where dmin = min
k∈{1,...,N}

(d̃i(qi, q′′i )− bi) is (loosely speaking) the smallest
time step that can be applied, and

◦

`′ =
{
`, if q` 6∈ F̃`
((`+ 1) mod N), otherwise

Then dG(qG, q′G) = dmin.

• FG = {(q1, . . . , qN , b1, . . . , bN , N) ∈ QG : qN ∈ F̃N}.

• ΣG =
⋃
i∈V

Σi.

• LG((q1, . . . , qN , b1, . . . , bN , `) =
⋃
i∈V

L̃i(qi).

The product WTS TG is again a WTS with a Büchi acceptance condition. The
index ` in a state qG = (q1, . . . , qN , b1, . . . , bN , `) ∈ QG allows to project an accepting
timed run of TG onto an accepting run of every one of the local Büchi WTS. The
construction is based on the standard definition of Büchi automata intersection (see,
e.g., [30]).

The following lemma follows directly from the construction and the principles of
automata-based LTL model checking (see, e.g., [30]):

Lemma 4.2. For all i ∈ V, an accepting timed run rtG of the product Büchi WTS
TG projects onto an accepting timed run rti of the local Büchi WTS T̃i that produces
a timed word w(rti) accepted by the corresponding TBA Ai. Vice versa, if there exists
a timed run rti of the local Büchi WTS T̃i that produces a timed word w(rti) accepted
by the TBA Ai for each i ∈ V, then there exist an accepting timed run rtG of TG.

4.3.4 Construction of the global Büchi WTS T̃G

Definition 4.6. Given the product Büchi WTS TG = (QG, Qinit
G ,−→G, dG, FG,ΣG, LG),

and a TBA AG = (SG, Sinit
G , CG, IG, EG,FG,ΣG,LG) that corresponds to the team

specification formula ϕG with CG and Cmax
G being the largest constant appearing in

AG, we define their product WTS T̃G = TG⊗AG = (Q̃G, Q̃init
G , G, d̃G, F̃G,ΣG, L̃G)

as follows:
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• Q̃G ⊆ {(q, s) ∈ QG × SG : LG(q) = LG(s)} × TMG
∞ .

• Q̃init
G = Qinit

G × Sinit
G × {0}CG × {1, 2}.

• q  G q′ iff

◦ q = (r, s, ν1, . . . , νCG , `) ∈ QG ,
q′ = (r′, s′, ν′1, . . . , ν′CG , `

′) ∈ QG,

◦ r −→G r′, and

◦ there exists γ,R, such that (s, γ, R, s′) ∈ EG, ν1, . . ., νCG |= γ, ν′1, . . .,
ν′CG |= IG(s′), and for all i ∈ {1, . . . , CG}

ν′i =


0, if ci ∈ R
νi + dG(r, r′), if ci 6∈ R and

νi + dG(r, r′) ≤ Cmax
G

∞, otherwise

◦

`′ =
{

1 if ` = 1 and r 6∈ FG, or ` = 2 and s ∈ FG
2 otherwise

Then d̃G(q, q′) = dG(r, r′).

• F̃G = {(r, s, ν1, . . . , νCG , 1) ∈ QG : r ∈ FG}.

• L̃G(rG, sG, ν1, . . . , νCG) = LG(rG).

Similarly to the results stated above, the global Büchi WTS T̃G is a WTS
with a Büchi acceptance condition. An accepting timed run of T̃G guarantees the
satisfaction of the team specification formula ϕG by construction. Furthermore, the
projected individual timed runs of the original T1, . . . , TN satisfy their respective
local specifications. The following lemma follows directly from the construction and
the principles of automata-based LTL model checking (see, e.g., [30]):

Lemma 4.3. An accepting timed run r̃tG of the global Büchi WTS T̃G projects onto
an accepting timed run rtG of the product Büchi WTS TG that produces a timed word
w(rtG) accepted by the TBA AG. Vice versa, if there exists a timed run rtG of the
product Büchi WTS TG that produces a timed word w(rtG) accepted by the TBA AG
then there exist an accepting timed run r̃tG of T̃G.
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4.3.5 Projection to the desired timed runs of T1, . . . , TN

An accepting run r̃tG of the global Büchi WTS T̃G can be found efficiently leveraging
ideas from automata-based LTL model checking [30]. Namely, T̃G is viewed as a
graph that is searched for a so-called accepting lasso; a cycle containing an accepting
state that is reachable from the initial state. Once r̃tG is obtained, Lemmas 4.3, 4.2,
and 5.6 directly provide guidelines for projection of r̃tG onto the individual timed
runs of T1, . . . , TN . In particular, r̃tG is projected onto a timed run rtG of TG, which
is projected onto timed runs r̃t1, . . . , r̃tN of T̃1, . . . , TN , which are finally projected
onto timed runs rt1, . . . , rtN of T1, . . . , TN , respectively. Such a projection guarantees
that rt1, . . . , rtN are a solution to Problem 4.1.

4.4 Illustrative Example

For an illustrative example, consider 2 robots in the shared workspace of Figure 4.2.
The workspace is partitioned into W = 21 cells and a robot’s state is defined by the
cell that the robot is currently present at. Agent 1 (R1) is depicted in green and
it is two times faster than Agent 2 (R2) which is depicted in red. We assume that
the environment imposes such moving constraints that the traveling right and up is
faster than left and down. Let Agent 1 need 1 time unit for up and right moves and
2 time units for down and left moves. Let also Agent 2 need 2 time units for up and
right moves and 4 time units for down and left moves.

We consider a scenario where the robots have to eventually meet at yellow regions
(global team task), and at the same time, they have to recharge within a certain time
interval in recharge locations (blue squares with the circles in the respective color).
The individual specifications are ϕ1 = ♦≤6(recharge1 ) and ϕ2 = ♦≤12(recharge2 )
stating that agent 1 has to recharge within 6 time units and agent 2 within 12 units,
respectively, and the team task is ϕG = ♦≤30{(meetA

1 ∧meetA
2 )∨ (meetB

1 ∧meetB
2 )}

stating that the agents have to meet either in the yellow region A or B within 30
time units.
An accepting collective timed run is

r̃tG = ((π1
4 , π

2
18), 0)((π1

11, π
2
18), 2) . . . ((π1

9 , π
2
10), 6)((π1

16, π
2
3), 8) . . .

((π1
13, π

2
5), 13)((π1

6 , π
2
6), 14) . . . ,

with corresponding timed word

w(r̃tG) = (∅, 0)(∅, π2
18), 2) . . . ({recharge1}, 6)({recharge2}, 8) . . .

(∅, π2
5), 13)(({meetA1 ,meetA2 }, 14) . . . ,

which satisfies the formula φG. The run r̃tG can be projected onto the individual
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R1

R2

A

B

2

1

1 2
π1

π21

π14π8

Figure 4.2: An illustrative example with 2 robots evolving in a common workspace.
Let W0 = π1 ∪ . . . ∪ π21. We enumerate the regions starting from the left region in
every row and ending in the right. The initial positions of robots R1, R2 are depicted
by a green and a red circle, respectively, the desired meeting points in yellow and the
recharging spots by the agents’ respective colors inside a blue box. The accepting runs
for task specifications φ1, φ2, φG are depicted with green and red arrows for agent 1
and agent 2, respectively.

timed runs

r̃1
t = (π1

4 , 0)(π1
11, 2)(π1

10, 4)(π1
9 , 6)(π1

16, 8)(π1
17, 9)(π1

18, 10)
(π1

19, 11)(π1
20, 12)(π1

13, 13)(π1
6 , 14) . . . ,

r̃2
t = (π2

18, 0)(π2
17, 4)(π2

10, 6)(π2
3 , 8)(π2

4 , 10)(π2
5 , 12)(π2

6 , 14) . . .

(they are depicted in Figure 4.2 with green and red arrows, respectively) with
corresponding timed words

w(r̃t1) = (∅, 0)(∅, 2)(∅, 4)({recharge1}, 6)(∅, 8)
(∅, 9)(∅, 10)(∅, 11)(∅, 12)(∅, 13)({meetA1 }, 14) . . . ,

w(rt2) = (∅, 0)(∅, 4)(∅, 6)({recharge2}, 8)(∅, 10)(∅, 12)({meetA2 }, 14) . . .

which satisfy formulas φ1 and φ2, respectively. All conditions from (4.3) are satisfied.
The runs and the words of the illustrative example are depicted in Figure 4.3.

4.5 Conclusions

We have proposed a systematic method for multi-agent controller synthesis aiming
cooperative planning under high-level specifications given in MITL formulas. The
solution involves a sequence of algorithmic automata constructions such that not
only team specifications but also individual specifications should be fulfilled.
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Figure 4.3: The accepting runs r̃t1, r̃t2, the collective run r̃tG and the corresponding
timed stamps. We denote with red dashed lines the times that both agents have the
same time stamps





Chapter 5

Decentralized Abstractions and Timed
Constrained Planning

This chapter presents a fully automated procedure for controller synthesis for a
general class of multi-agent systems under coupling constraints. Each agent is
modeled with dynamics consisting of two terms: the first one models the coupling
constraints and the other one is an additional bounded control input. We aim to
design these inputs so that each agent meets an individual high-level specification
given as a Metric Interval Temporal Logic (MITL). Furthermore, the connectivity
of the initially connected agents, is required to be maintained. First, assuming a
polyhedral partition of the workspace, a novel decentralized abstraction that provides
controllers for each agent that guarantee the transition between different regions is
designed. The controllers are the solution of a Robust Optimal Control Problem
(ROCP) for each agent. Second, by utilizing techniques from formal verification, an
algorithm that computes the individual runs which provably satisfy the high-level
tasks is provided. Finally, simulation results conducted in MATLAB verify the
performance of the proposed framework.

5.1 Introduction

In Chapter 4, an automata-based solution was proposed, where MITL formulas
were introduced in order to synthesize controllers such that every agent fulfills
an individual specification and the team of agents fulfills a global specification.
Specifically, the abstraction of each agent’s dynamics was considered to be given and
an upper bound of the time that each agent needs to perform a transition from one
region to another was assumed. Furthermore, potential coupled constraints between
the agents were not taken into consideration. Motivated by this, in this chapter, we
aim to address the aforementioned issues. We assume that the dynamics of each
agent consists of two parts: the first part is a nonlinear function representing the
coupling between the agent and its neighbors, and the second one is an additional
control input which will be exploited for high-level planning. Hereafter, we call it

53
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a free input. A decentralized abstraction procedure is provided, which leads to an
individual Weighted Transition System (WTS) for each agent and provides a basis
for high-level planning.

Abstractions for both single and multi-agent systems have been provided e.g.
in [111, 114–121]. In this chapter, we deal with the complete framework of both
abstractions and controller synthesis of multi-agent systems. We start from the
dynamics of each agent and we provide controllers that guarantee the transition
between the regions of the workspace, while the initially connected agents remain
connected for all times. The decentralized controllers are the solution of an ROCP.
Then, each agent is assigned an individual task given as an MITL formulas. We aim
to synthesize controllers, in discrete level, so that each agent performs the desired
individual task within specific time bounds as imposed by the MITL formulas. In
particular, we provide an automatic controller synthesis method of a general class of
coupled multi-agent systems under high-level tasks with timed constraints. Compared
to existing works on multi-agent planning under temporal logic specifications, the
proposed approach considers dynamically coupled multi-agent systems under timed
temporal specifications in a distributed way.

In our previous work [18], we treated a similar problem, but the under con-
sideration dynamics were linear couplings and connectivity maintenance was not
guaranteed by the proposed control scheme. Furthermore, the procedure was par-
tially decentralized, due to the fact that a product Wighted Transition System
(WTS) was required, which rendered the framework computationally intractable.
To the best of the authors’ knowledge, this is the first time that a fully automated
framework for a general class of multi-agent systems consisting of both constructing
purely decentralized abstractions and conducting timed temporal logic planning is
considered.

This chapter is organized as follows. In Section 5.2 a description of the notations
is given. Section 5.3 provides the modeling of the system and the formal problem
statement. Section 5.4 discusses the technical details of the solution. Section 5.5 is
devoted to a simulation example. Finally, conclusions and future work are discussed
in Section 5.6.

5.2 Notation

In this chapter, the set-valued function B : R2 × R>0 ⇒ R2 given as B(c, r) =
{x ∈ R2 : ‖x − c‖ ≤ r} is the disk of center c ∈ R2 and r ∈ R>0. The indexes
i and j stand for agent i and its neighbors (see Section 5.3 for the definition of
neighbors), respectively; µ, z ∈ N are indexes used for sequences and sampling times,
respectively. In the subsequent analysis a discrete partition of the workspace will
be considered which is formalized through Definition 2.3. Hereafter, every member
S`, ` ∈ I of a partition S, as is defined in 2.3 will be called region.
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5.3 Problem Formulation

5.3.1 System Model
Consider a system of N agents, with V = {1, . . . , N}, N ≥ 2, operating in a
workspace W ⊆ R2. The workspace is assumed to be closed and bounded. Let
xi : R≥0 →W denotes the position of each agent in the workspace at time t ∈ R≥0.
Each agent is equipped with a sensor device that can sense omni-directionally. Let
the disk B(xi(t), r) model the sensing zone of agent i at time t ∈ R≥0, where r ∈ R≥0
is the sensing radius. The sensing radius is the same for all the agents. Let also
h > 0 denote the constant sampling period of the system. We make the following
assumption:

Assumption 5.1. (Measurements Assumption) It is assumed that each agent i, is
able to measure its own position and all agents’ positions that are located within
agent’s i sensing zone without any delays.

According to Assumption 5.1, the agent’s i neighboring set at time t0 is defined
by Ni = {j ∈ V : xj(t0) ∈ B(xi(t0), r)}. For the neighboring set Ni define also
Ni = |Ni|. Note that i ∈ Nj ⇔ j ∈ Ni,∀ i, j ∈ V, i 6= j. The control design for every
agent i should guarantee that it remains connected with all its neighbors j ∈ Ni,
for all times.

Consider the neighboring set Ni. The coupled dynamics of each agent are given
in the form:

ẋi = f(xi, x̄i) + ui, xi ∈W, i ∈ V, (5.1)

where f : W ×WNi →W , is a nonlinear function representing the coupling between
agent i and its neighbors i1, . . . , iNi . The notation x̄i = [x>i1 , . . . , x

>
iNi

]> ∈ WNi is
used for the vector of the neighbors of agent i, and ui : R≥0 → R2, i ∈ V is the
control input of each agent. The control inputs are assumed to be bounded by a
positive constant umax. Hence,

ui ∈ Ui , {ui ∈ R2 : ‖ui‖ ≤ umax}, i ∈ V. (5.2)

Assumption 5.2. The functions fi(xi, x̄i), i ∈ V are Lipschitz continuous in W ×
WNi . Thus, there exists constants Li, L̄i > 0 such that the following inequalities
hold:

‖fi(xi, x̄i)− fi(yi, x̄i)‖ ≤ Li‖xi − yi‖, (5.3a)
‖fi(xi, x̄i)− fi(xi, ȳi)‖ ≤ L̄i‖x̄i − ȳi‖, (5.3b)

for all xi, yi ∈W, x̄i, ȳi ∈WNi , i ∈ V.

Remark 5.1. The coupling terms fi(xi, x̄i), i ∈ V are encountered in a large set of
multi-agent protocols [58], including consensus, connectivity maintenance, collision
avoidance and formation control. In addition, (5.1) may represent internal dynamics
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of the system as for instance in the case of smart buildings (see e.g., [122]) where
the temperature Ti, i ∈ V of each room evolves according to the law

Ṫi =
∑
j∈Ni

αij(Tj − Ti) + ui,

with αij representing the heat conductivity between rooms i and j and ui the
heating/cooling capabilities of the room.

5.3.2 Specification
Our goal is to control the multi-agent system (5.1) so that each agent obeys a
given individual specification. In particular, it is required to drive each agent to
a sequence of desired subsets of the workspace W within certain time limits and
provide certain atomic tasks there. Atomic tasks are captured through a finite set
of atomic propositions Σi, i ∈ V, with Σi ∩ Σj = ∅, for all i, j ∈ V, i 6= j, which
means that the agents do not share any atomic propositions. Each position xi of
each agent i ∈ V is labeled with atomic propositions that hold there. Initially, a
labeling function

Λi : W → 2Σi , (5.4)
is introduced for each agent i ∈ V which maps each state xi ∈ R2 with the atomic
propositions Λi(xi) which hold true at xi i.e., the subset of atomic propositions
that hold for agent i in position xi. Define also by Λ(x) =

⋃
i∈V

Λi(x) the union of

all the labeling functions. Let us now introduce the following assumption which is
important for defining the problem properly.

Assumption 5.3. There exists a partition D = {D`}`∈I of the workspace W
which respects the labeling function Λ i.e., for all D` ∈ D it holds that Λ(x) =
Λ(x′),∀ x, x′ ∈ D`. This assumption, intuitively, and without loss of generality,
means that the same atomic propositions hold at all the points that belong to the
same region of the partition.

Although the regions D`, ` ∈ I of the partition D may have different geometric
shape, without loss of generality, we assume that they are hexagons with side length
R. Define also for each agent i a labeling function:

Li : D → 2Σi , (5.5)

which maps every region of the partition D to the subset of the atomic propositions
which hold true there. Furthermore, we assume that a time step T > h > 0 is given.
This time step models the required time in which each agent should transit from a
region to a neighboring region and is the same for all the agents.

The trajectory of each agent i is denoted by xi(t), t ≥ 0, i ∈ V. The trajectory
xi(t) is associated with a unique sequence:

rtxi = (ri(0), τi(0))(ri(1), τi(1))(ri(2), τi(2)) . . . ,
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x1(0)

x1(t2)

x2(0)

D1 D2 D3

D4D5D6

x1(t1) x1(t3)

x2(t′1)

x2(t′2)

x2(t′3)

Figure 5.1: An example of two agents performing in a partitioned workspace.

of regions that the agent i crosses, where for all µ ≥ 0 it holds that: xi(τi(µ) ∈ ri(µ)
and Λi(xi(t)) = Li(ri(µ)),∀ t ∈ [τi(µ), τi(µ + 1)) for some ri(µ) ∈ D and ri(µ) 6=
ri(µ+ 1). The timed word:

wtxi = (Li(ri(0)), τi(0))(Li(ri(1)), τi(1))(Li(ri(2)), τi(2)) . . . ,

where wi(µ) = Li(ri(µ)), µ ≥ 0, i ∈ V, is associated uniquely with the trajectory
xi(t).

Definition 5.1. For each agent i ∈ V we define the relaxed timed word as:

w̃ti = (wi(0), τ̃i(0))(wi(1), τ̃i(1))(wi(2), τ̃i(2)) . . . , (5.6)

where wi(µ) = Li(ri(µ)), τ̃i(µ) ∈ [τi(µ), τi(µ+ 1)),∀ µ ≥ 0.

The time stamp τi(0) = τ̃i(0) = t0, i ∈ V models the initial starting time of the
agents. The time stamps τi(µ), µ ≥ 1 models the exact time in which the agent
i crosses the boundary of the regions ri(µ − 1) and ri(µ). The time stamps τ̃i(µ)
model a time instant in which the agent i is in the region ri(µ) of the workspace
(see Example 5.1 below). The specification task ϕi given as an MITL formula over
the set of atomic propositions Σi, represents desired tasks that are imposed to each
agent i ∈ V. We say that a trajectory xi(t) satisfies a formula ϕi given in MITL
over the set Σi, and we formally write:

xi(t) |= ϕi,∀t ≥ 0,

if and only if there exists a relaxed timed word w̃ti that complies with xi(t) and
satisfies ϕi according to the semantics of MITL in 2.13.

Example 5.1. Consider N = 2 agents performing in the partitioned environment
of Figure 5.1. Both agents have the ability to pick up, deliver and throw two different
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balls. Their sets of atomic propositions are Σ1 = {pickUp1, deliver1, throw1} and
Σ2 = {pickUp2, deliver2, throw2}, respectively, and satisfy Σ1 ∩ Σ2 = ∅. Three
points of the agents’ trajectories that belong to different regions with different
atomic propositions are captured. Assume that t1 < t′1 < t2 < t2 < t′2 < t3 < t′3.
The trajectories x1(t), x2(t), t ≥ 0 are depicted with the red lines. According to
Assumption 5.3, the partition D = {D`}`∈I = {D1, . . . , D6} is given where I =
{1, . . . , 6} respects the labeling functions Λi, Li, i ∈ {1, 2}. In particular, it holds
that:

Λ1(x1(t)) = L1(r1(0)) = {pickUp1}, t ∈ [0, t1),
Λ1(x1(t)) = L1(r1(1)) = {throw1}, t ∈ [t1, t2),
Λ1(x1(t)) = L1(r1(2)) = {deliver1}, t ∈ [t2, t3),
Λ1(x1(t)) = L1(r1(3)) = ∅, t ≥ t3.
Λ2(x2(t)) = L2(r2(0)) = {pickUp2}, t ∈ [0, t′1),
Λ2(x2(t)) = L2(r2(1)) = {deliver2}, t ∈ [t′1, t′2),
Λ2(x2(t)) = L2(r2(2)) = {throw2}, t ∈ [t′2, t′3),
Λ2(x2(t)) = L2(r2(3)) = ∅, t ≥ t′3.

By the fact that wi(µ) = L(ri(µ)),∀ i ∈ {1, 2}, µ ∈ {1, 2, 3}, the corresponding
individual timed words are given as:

wtx1
= ({pickUp1}, 0)({throw1}, t1)({deliver1}, t2)(∅, t3),

wtx2
= ({pickUp2}, 0)({deliver2}, t′1)({throw2}, t′2)(∅, t′3).

According to (5.6), two relaxed timed words (depicted with red in Figure 5.1) are
given as:

wt1 = ({pickUp1}, τ̃1(0))({throw1}, τ̃1(1))({deliver1}, τ̃1(2))(∅, τ̃1(3)),
wt2 = ({pickUp2}, τ̃2(0))({deliver2}, τ̃2(1))({throw2}, τ̃2(2))(∅, τ̃2(3)).

The time stamps τ̃1(µ), τ̃2(µ), µ ∈ {1, 2, 3}, should satisfy the following conditions:

τ̃1(0) ∈ [τ1(0), τ1(1)) = [0, t1),
τ̃1(1) ∈ [τ1(1), τ1(2)) = [t1, t2),
τ̃1(2) ∈ [τ1(2), τ1(3)) = [t2, t3),
τ̃1(3) ∈ [τ1(3), ·) = [t3, ·),
τ̃2(0) ∈ [τ2(0), τ2(1)) = [0, t1),
τ̃2(1) ∈ [τ2(1), τ2(2)) = [t1, t2),
τ̃2(2) ∈ [τ2(2), τ2(3)) = [t2, t3),
τ̃2(3) ∈ [τ2(3), ·) = [t3, ·).
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5.3.3 Problem Statement
We can now formulate the problem treated in this chapter as follows:

Problem 5.1. Given N agents operating in the bounded workspace W ⊆ R2, their
initial positions x1(t0), . . . , xN (t0), their dynamics as in (5.1), a time step T > h > 0,
N task specification formulas ϕ1, . . . , ϕN expressed in MITL over the sets of services
Σ1, . . . ,ΣN , respectively, a partition of the workspace W into hexagonal regions
{D`}`∈I with side length R, as given in Assumption 5.3 and the labeling functions
Λ1, . . . ,ΛN , L1, . . . , LN , as in (5.4), (5.5), assign control laws u1, . . . , uN to each
agent 1, . . . , N , respectively, such that the connectivity between the agents that
belong to the neighboring sets N1, . . . ,NN is maintained, as well as each agent
fulfills its individual MITL specification ϕ1, . . . , ϕN , respectively, i.e.,

x1(t) |= ϕ1, . . . , xN (t) |= ϕN ,∀ t ∈ R≥0.

Remark 5.2. The initial positions x1(t0), . . . , xN (t0) should be such that the agents
which are required to remain connected for all times need to satisfy the inequality
‖xi(t0)− xi′(t0)‖ < r, i, i′ ∈ V, i 6= i′.

Remark 5.3. It should be noted that, in this work, the dependencies between
the agents are induced through the coupled dynamics (5.1) and not in the discrete
level, by allowing for couplings between the services (i.e., Σi ∩ Σj 6= ∅, for some
i, j ∈ V). Hence, even though the agents do not share atomic propositions, the
constraints on their motion due to the dynamic couplings and the connectivity
maintenance specifications may restrict them to fulfill the desired high-level tasks.
Treating additional couplings through individual atomic propositions in the discrete
level is a topic of future work.

Remark 5.4. In Chapter 4, the multi-agent system was considered to have fully-
actuated dynamics. The only constraints on the system were due to the presence of
time constrained MITL formulas. In the current framework, we have two types of
constraints: the constraints due to the coupling dynamics of the system (5.1), which
constrain the motion of each agent, and, the timed constraints that are inherently
imposed from the time bounds of the MITL formulas. Thus, there exist formulas that
cannot be satisfied either due to the coupling constraints or the time constraints
of the MITL formulas. These constraints, make the procedure of the controller
synthesis in the discrete level substantially different and more elaborate than the
corresponding multi-agent LTL frameworks in the literature ([89, 94, 95, 108]).

5.4 Main Results

In this section, a systematic solution to Problem 5.1 is introduced. Our overall
approach builds on abstracting the system in (5.1) through a WTS for each agent
and exploiting the fact that the timed runs in the i-th WTS project onto the
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•
xi(tk)

P (i, k)
P̃ (i, k, 2)

P̃ (i, k, 3)

P̃ (i, k, 4)

P̃ (i, k, 5)

P̃ (i, k, 6)

P̃ (i, k, 1)

Figure 5.2: Illustration of agent i occupying region P (i, k), depicted by green, at
time tk = t0 + kT with P̄ (i, k) =

⋃
˜̀∈L

P̃ (i, k, ˜̀) being the set of regions that the agent

can transit at exactly time T .

trajectories of agent i while preserving the satisfaction of the individual MITL
formulas ϕi, i ∈ V. In particular, the following analysis is performed:

1. We propose a novel decentralized abstraction technique for the multi-agent
system, i.e., discretization of the time into time steps T for the given partition
D = {D`}`∈I, such that the motion of each agent is modeled by a WTS Ti, i ∈ V
(Section 5.4.1). We adopt here the technique of designing Nonlinear Model
Predictive Controllers (NMPC), for driving the agents between neighboring
regions.

2. A three-step automated procedure for controller synthesis which serves as a
solution to Problem 5.1 is provided in Section 5.4.2.

3. Finally, the computational complexity of the proposed approach is discussed
in Section 5.4.3.

The next sections provide the proposed solution in detail.

5.4.1 Discrete System Abstraction
In this section we provide the abstraction technique that is designed in order to
capture the dynamics of each agent into WTSs. Thereafter, we work completely at
discrete level, which is necessary in order to solve Problem 5.1.

Workspace Geometry

Consider an enumeration I of the regions of the workspace, the index variable ` ∈ I
and the given time step T . The time step T models the time duration that each
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agent needs to transit between two neighboring regions of the workspace. Consider
also a timed sequence:

S = {t0, t1 = t0 + T, . . . , tk = t0 + kT, . . . }, k ∈ N. (5.7)

S models the time stamps in which the agents are required to occupy different
neighboring regions. For example, if at time tk agent i occupies region D`, at the
next time stamp tk +T is required to occupy a neighboring region of D`. The agents
are always forced to change region for every different time stamp of the sequence S.
Let us define the mapping:

P : V × N→ D,

which denotes the fact that the agent i ∈ V, at time instant

tk = t0 + kT, k ∈ N,

occupies the region D`i
∈ D for an index `i ∈ I. Define the mapping:

P̃ : V × N× L→ D.

where L = {1, . . . , 6}. By P̃ (i, k, ˜̀), ˜̀∈ L we denote one and only one out of the six
neighboring regions of region P (i, k) that agent i occupies at time tk. Define also by
P̄ (i, k) the union of all the six neighboring regions of region P (i, k), i.e.,

P̄ (i, k) =
⋃
˜̀∈L P̃ (i, k, ˜̀),

with |P̄ (i, k)| = 6. An example of agent i being at the region P (i, k) along with its
neighboring regions is depicted in Figure 5.2.

We start by giving a graphical example for the abstraction technique that
will be adopted in this chapter. Consider an agent i occupying the green region
P (i, k) = D`i

at time tk = t0 + kT and let its neighbors j1, j2 occupying the red
and blue regions P (j1, k) = D`j1

, P (j2, k) = D`j2
, respectively, as is depicted in

Figure 5.3. The neighboring regions P̄ (i, k), P̄ (j2, k) and P̃ (j1, k, ˜̀), ˜̀∈ {4, 5, 6} for
agent i, j2, j1, respectively, are also depicted. All the agents start their motion at
time tk simultaneously. Let D`des ∈ P̄ (i, k) be a candidate neighboring region that
agent i should transit to. The goal is to design a decentralized feedback control law
ui(xi, xj1 , xj2), that drives agent i in the neighboring region D`des exactly at time
T , regardless of the transitions of its neighbors to their neighboring regions. This
procedure is repeated for all possible neighboring regions i.e., six times, and for all
the agents. For the example of Figure 5.3, the procedure is performed 63 times (six
times for each agent). By employing this procedure, we are able to: 1) synchronize
the agents so that each of them knows at every time step T its position in the
workspace as well as the region that occupies; 2) know which controller brings each
agent in its desired region for any possible choice of controllers of its corresponding
neighbors. We will hereafter present a formal approach of this procedure.
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xi(tk)

xj1(tk)

xj2(tk)

•

•

••xi(tk + T )

D`des

P (i, k)

P (j2, k)
P (j1, k)

ui

Figure 5.3: Illustration of three connected agents i, j1, j2. The agents are occupying
the regions P (i, k) = D`i

, P (j2, k) = D`j1
and P (j1, k) = D`j2

at time tk = t0 + kT ,
depicted by green, red and blue color, respectively. Their corresponding neighboring
regions P̄ (i, k), P̄ (j1, k) and P̃ (j2, k, ˜̀), ˜̀∈ {4, 5, 6}, respectively, are also depicted;
P̃ (i, k, 6) = D`des is the desired region in which agent i needs to move at time T by
applying a decentralized control law ui(xi, xj1 , xj2 ).

Decentralized Controller Specification

Consider a time interval [tk, tk + T ]. We state here the specifications that a decen-
tralized feedback controller ui(xi, x̄i) needs to guarantee so as agent i to have a
well-defined transition between two neighboring regions within the time interval
[tk, tk + T ].

(S1) The controller needs to take into consideration the dynamics (5.1) and the
constraints that are imposed by (5.2).

(S2) Agent i should move from one region P (i, k) ∈ D to a neighboring region
P̃ (i, k, ˜̀), without intersecting other regions, irrespectively of which region its
neighbors are moving to. Thus, since the duration of the transition is T , it is
required that xi(tk) ∈ P (i, k), xi(tk + T ) ∈ P̃ (i, k, ˜̀) and xi(t) ∈ P (i, k) ∪ P̃ (i, k, ˜̀),
∀t ∈ (tk, tk + T ). The neighbors of agent i will move also to exactly one of their
corresponding neighboring regions.

Remark 5.5. The reason for imposing the aforementioned constraints is due to
the need of imposing safety specifications to the agents. Thus, it is required that
the agents will not cross more than one neighboring region within the duration of a
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transition T .

Error Dynamics

Let us define by x
i,k,˜̀,des ∈ P̃ (i, k, ˜̀) the geometrical center of the desired region

P̃ (i, k, `) that agent i needs to occupy at time tk + T . Define also by:

ei(t) = xi(t)− xi,k,˜̀,des, t ∈ [tk, tk + T ], (5.8)

the error which the controller ui needs to guarantee to become zero in the time
interval t ∈ [tk, tk + T ]. Then, the nominal error dynamics are given by:

ėi(t) = gi(ei(t), x̄i(t), ui(t)), t ∈ [tk, tk + T ], (5.9)

with initial condition ei(tk) = xi(tk)− x
i,k,˜̀,des, where:

gi(ei(t), x̄i(t), ui(t)) , fi(ei(t) + x
i,k,˜̀,des, x̄i(t)) + ui(t).

State Constraints

Before defining the ROCP we state here the state constraints that are imposed to
the state of each agent. Define the set:

Xi =
{xi ∈W, x̄i ∈WNi : ‖xi − xj‖ < r,∀j ∈ Ni(0), xi ∈ P (i, k) ∪ P̃ (i, k, ˜̀), ˜̀∈ L},

as the set that captures the state constraints of agent i. The first constraint in the
set X stands for the connectivity requirement of agent i with all its neighbors; the
second one stands for the requirement each agent to transit from one region to
exactly one desired neighboring region. In order to translate the constraints that are
dictated for the state xi(t) into constraints regarding the error state ei(t) from (5.9),
define the set Ei = Xi⊕ (−x

i,k,˜̀,des), where ⊕ stands for the Minkowski addition as
defined in Definition 2.1. Then, the following implication holds: xi ∈ Xi ⇒ ei ∈ Ei.

Control Design

This subsection concerns the control design regarding the transition of agent i to
one neighboring region P̃ (i, k, ˜̀), for some ˜̀∈ L. The abstraction design, however,
concerns all the neighboring regions P̄ (i, k), for which we will discuss in the next
subsection.

The timed sequence S consists of intervals of duration T . Within every time
interval [tk, tk + T ], each agent needs to be at time tk in region P (i, k) and at time
tk + T in a neighboring region P̃ (i, k, ˜̀), ˜̀ ∈ L. We assume that T is related to
the sampling time h according to: T = mh,m ∈ N. Therefore, within the time
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interval [tk, tk + T ], there exists m+ 1 sampling times. By introducing the notation
tkz , tk + zh,∀z ∈M , {0, . . . ,m}, we denote by {tkz}z∈M the sampling sequence
within the interval [tk, tk +T ]. Note that tk0 = tk and tkm = tk +T . The indexes k, z
stands for the interval and for the sampling times within this interval, respectively.
As it will be presented hereafter, at every sampling time tkz , z ∈ M, each agents
solves a ROCP.

Our control design approach is based on Nonlinear Model Predictive Control
(NMPC). NMPC has been proven to be efficient for systems with nonlinearities and
state/input constraints. For details about NMPC we refer the reader to [123–132].
We propose here a sampled-data NMPC with decreasing horizon in order to design
a controller that respects the desired specifications and guarantees the transition
between regions at time T . In the proposed sampled-data NMPC, an open-loop
Robust Optimal Control Problem (ROCP) is solved at every discrete sampling time
instant tkz , z ∈M based on the current error state information ei(tkz ). The solution
is an optimal control signal ûi(t), for t ∈ [tkz , tkz +Tz], where Tz is defined as follows.

Definition 5.2. A decreasing horizon policy is defined by:

Tz = T − zh, z ∈M. (5.10)

This means that at every time sample tkz in which the ROCP is solved, the
horizon is decreased by a sampling time h. The specific policy is adopted in order to
enforce the controllers ui to guarantee that agent i will reach the desired neighboring
region at time T ; (5.10) implies also that tkz + Tz = tk + T, ∀z ∈ M. A graphical
illustration of the presented time sequences is given in Figure 5.4.

The open-loop input signal is applied in between the sampling instants and is
given by the solution of the following Robust Optimal Control Problem (ROCP):
O(k, xi(t), x̄i(t), P (i, k), ˜̀, x

i,k,˜̀,des), t ∈ [tkz , tkz + Tz], which is defined as:

min
ûi(·)

Ji(ei(tkz )), ûi(·)) =

min
ûi(·)

{
Vi(êi(tkz + Tz)) +

∫ tkz+Tz

tkz

[
Fi(êi(s), ûi(s))

]
ds

}
(5.11a)

subject to:
˙̂ei(s) = gi(êi(s), ˆ̄xi(s), ûi(s)), êi(tkz ) = ei(tkz ), (5.11b)
êi(s) ∈ Eis−tkz , ûi(s) ∈ Ui, s ∈ [tkz , tkz + Tz], (5.11c)
êi(tkz + Tz) ∈ Ei. (5.11d)

The ROCP has as inputs the terms k, xi(t), x̄i(t), P (i, k), ˜̀, x
i,k,˜̀,des, for time

t ∈ [tkz , tkz + Tz]. We will explain hereafter all the terms appearing in the ROCP
problem (5.11a)-(5.11d). By hat (̂·) we denote the predicted variables (internal
to the controller), corresponding to the system (5.9) i.e., êi(·) is the solution of
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tkz tkz+1 tkz + Tz+1 tkz + Tz

h h

T

Figure 5.4: The prediction horizon of the ROCP along with the times tkz < tkz+1
< tkz + Tz+1 < tkz +Tz, with tkz = tk + zh and Tz = T − zh, z ∈ M.

(5.11b) driven by the control input ûi(·) : [tkz , tkz + Tz]→ Ui with initial condition
êi(tkz ) = ei(tkz ). The set Eis−tkz will be explicitly defined later.

Remark 5.6. In sampled-data NMPC bibliography an ROCP is defined over the
time interval s ∈ {ti, ti+1 = ti + h, . . . , ti + T}, where T is the prediction horizon.
Due to the fact that we have denoted by i the agents, and the fact that the
ROCP is solved for every time interval, we use the notation s ∈ {tkz = tk, tkz+1 =
tk + h, . . . , tkz + Tz = tkz + T}, instead. The indexes k, z stands for the interval and
for the sampling time, respectively. A graphical illustration of the presented time
sequence is given in Figure 5.4.

Remark 5.7. Note that the predicted values are not the same with the actual
closed-loop values due to the fact that agent i, can not know the estimation of
the trajectories of its neighbors ˆ̄x, within a predicted horizon. Thus, the term ˆ̄x is
treated as a disturbance to the nominal system (5.9).

The term Fi : Ei × Ui → R≥0, stands for the running cost, and is chosen as:

Fi(ei, ui) = e>i Qiei + u>i Riui,

where Qi = diag{qi1 , qi2}, Ri = diag{ξi1 , ξi2}, with qiζ ∈ R≥0, ξiζ ∈ R>0, ζ ∈ {1, 2}.
For the running cost, it holds that Fi(0, 0) = 0, as well as:

mi‖ei‖2 ≤ Fi(ei, ui) ≤ m̄i‖ei‖2, (5.12)

where mi, m̄i will be defined later. Note that mi‖ei‖2 is K function, according to
Definition 2.4.

Lemma 5.1. The running cost function Fi(ei, ui) is Lipschitz continuous in Ei×Ui,
with Lipschitz constant:

LFi = 2ε̄iσmax(Qi),

where:
ε̄i = sup

ei∈Ei
{‖ei‖},

for all ei ∈ Ei, ui ∈ Ui.
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Proof. The proof can be found in Appendix B.1.

The terms Vi : Ei → R>0 and Ei ⊆ Ei are the terminal penalty cost and terminal
set, respectively, and are used to enforce the stability of the system. The terminal
cost is given by:

Vi(ei) = e>i Piei.

where Pi = diag{pi1 , pi2}, with piζ ∈ R>0, ζ ∈ {1, 2}. We choose:

mi = min{qi1 , qi2 , ξi1 , ξi2},
m̄i = max{qi1 , qi2 , ξi1 , ξi2}. (5.13)

The solution of the nominal model (5.9) at time s ∈ [tkz , tkz + Tz], starting at time
tkz from an initial condition ei(tkz), applying a control input ui : [tkz , s] → Ui is
denoted by:

ei(s;ui(·), ei(tkz )), s ∈ [tkz , tkz + Tz].

The predicted state of the system (5.9) at time s ∈ [tkz , tkz + Tz] is denoted by:

êi(s;ui(·), ei(tkz )), s ∈ [tkz , tkz + Tz],

and it is based on the measurement of the state ei(tkz ) at time tkz , when a control
input ui(·; ei(tkz )) is applied to the system (5.9) for the time period [tkz , s]. Thus, it
holds that:

ei(s) = êi(s;ui(·), ei(s)), s ∈ [tkz , tkz + Tz]. (5.14)

The state measurement enters the system via the initial condition of (5.11b)
at the sampling instant, i.e. the system model used to predict the future system
behavior is initialized by the actual system state. The solution of the ROCP (5.11a)-
(5.11d) at time tkz provides an optimal control input denoted by û?i (t; e(tkz)), for
t ∈ [tkz , tkz + Tz]. It defines the open-loop input that is applied to the system until
the next sampling instant tkz+1 :

ui(t; ei(ti)) = û?i (tkz ; ei(tkz )), t ∈ [tkz , tkz+1). (5.15)

The corresponding optimal value function is given by:

J?i (ei(tkz )) , Ji(ei(tkz ), û?i (·; ei(tkz ))). (5.16)

with Ji(·) as is given in (5.11a). The control input ui(t; ei(tkz)) is of the feedback
form, since it is recalculated at each sampling instant using the new state information.
Define an admissible control input as:

Definition 5.3. A control input ui : [tkz , tkz + Tz]→ R2 for a state e(tkz ) is called
admissible, if the following hold:

1. ui(·) is piecewise continuous;
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••
xj(tk)

xj(tk + T )

r
h

Figure 5.5: Illustration of agent j occupying region P (j, k), depicted by green, at
time tk = t0 + kT along with the regions P̄ (j, k). It is desired for agent j to move to
region P̃ (j, k, 2) at exactly time T . The inscribed circle of regions P (j, k), P̃ (j, k, 2) are
depicted with dashed orange color. The radius of the inscribed circle of the depicted
hexagons is given by rh =

√
3

2 R. By taking into consideration that each agent is moving
at most to one neighboring region, according to the constraint set Xj , the following
holds: sup{‖x− y‖ : x ∈ P (j, k), y ∈ P̄ (j, k)} = 4rh = 2

√
3R.

2. ui(s) ∈ Ui,∀ s ∈ [tkz , tkz + Tz];

3. ei(s;ui(·), e(tkz )) ∈ Ei,∀ s ∈ [tkz , tkz + Tz];

4. ei(Tz;ui(·), e(tkz )) ∈ Ei;

Property 5.1. For the given hexagonal regions with side length R, the radius of
the inscribed circle is given by rh =

√
3

2 R (two inscribed circles for the given regions
are depicted with orange in Figure 5.5). Thus, according to Figure 5.5, an upper
bound of the norm of differences between the actual position xj and the estimated
position x̂j of the agent’s i neighbors states, is given by:

‖xj − x̂j‖ ≤ 2rh =
√

3R, j ∈ Ni, (5.17)

due to the fact that each agent can transit at most to a neighboring region, according
to the constraint set Xi.

Lemma 5.2. In view of Assumption 5.2, the difference between the actual mea-
surement ei(s) = ei(s;ui(s; ei(tkz)), ei(tkz)) at time s ∈ [tkz , tkz + Tz] and the
predicted state êi(s;ui(s; ei(tkz )), ei(tkz )) at the same time under the same control
law ui(s; ei(tkz )), starting at the same initial state ei(tkz ), is upper bounded by:

‖ei(s)− êi(s;ui(s; ei(tkz )), ei(tkz ))‖ ≤ ρi(s− tkz ), (5.18)
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where ρi : R≥0 → R, with:

ρi(y) = ρ̃i
[
eLiy − 1

]
, (5.19)

and
ρ̃i = R

√
3NiL̄i
Li

. (5.20)

Proof. The proof can be found in Appendix B.2.

The satisfaction of the constraint on the state along the prediction horizon
depends on the future evolution of the neighboring agents trajectories. Under
Assumptions (5.2) of Lipschitz continuity and bounds of the nominal model, respec-
tively, it is possible to compute a bound on the future effect of the disturbance on
the system as is given by Lemma 5.2. Then, by considering this effect on the state
constraint on the nominal prediction, it is possible to guarantee that the evolution
of the real state of the system will be admissible all the time. In view of latter, the
state constraint set E of the standard NMPC formulation, is being replaced by a
restricted constrained set Eis−tkz ⊆ Ei in (5.11c). This state constraint’s tightening
for the nominal system (5.9) is a key ingredient of the robust NMPC controller
and guarantees that the evolution of the real system will be admissible. Authors
in [132, 133] has considered such a Robust NMPC formulation. The restricted
constrained set is then defined as Eis−tkz = Ei ∼ Bis−tkz , where:

Bis−tkz =
{
ei ∈ R2 : ‖ei(s)‖ ≤ ρi(s− tkz )

}
, s ∈ [tkz , tkz + Tz],

as ρi given in 5.2.

Property 5.2. For every s ∈ [tkz , tkz + Tz], we have that if

êi(s;ui(s; e(tkz )), ei(tkz )) ∈ Eis−tkz = Ei ∼ Bis−tkz ⊆ Ei,

then the real state satisfies the constraint Ei, i.e., ei(s) ∈ Ei.

Proof. The proof can be found in Appendix B.3.

For the feasibility and convergence proofs of the ROCP the following assumptions
are required.

Assumption 5.4. Assume that there exists a local stabilizing controller uf,i =
κi(ei) ∈ Ui satisfying:

∂Vi
∂ei

[gi(ei, x̄i, κi(ei))] + Fi(ei, κi(ei)) ≤ 0,∀ ei ∈ Φi, (5.21)

where Φi is a set given by:

Φi , {ei ∈ R2 : Vi(ei) ≤ α1,i}, α1,i > 0,



5.4. Main Results 69

such that:
Φi ⊆ Ei , {ei ∈ EiTz : κi(ei) ∈ Ui},

where EiTz = Ei ∼ BiTz .

Lemma 5.3. The terminal penalty function Vi(·) is Lipschitz in Φi, with Lipschitz
constant LV,i = 2σmax(Pi)α1,i, for all ei(t) ∈ Φi.

Proof. The proof can be found in Appendix B.4.

Once the set Φi is computed, the terminal constraint set Ei is given by the
following. Supposing that Assumption 5.4 holds. Then, by choosing:

Ei = {ei ∈ R2 : Vi(ei) ≤ αi,2}, with α2,i ∈ (0, α1,i), (5.22)

we guarantee the following: 1) Ei ⊆ P̃ (i, k, ˜̀), i.e. the terminal set is a subset of the
desired neighboring region; 2) for all ei ∈ Φi it holds that gi(ei, κi(ei)) ∈ Ei.

The following two lemmas are required in order to prove the basic Theorem or
this paper.

Lemma 5.4. Let s ≥ tkz+1 , x ∈ Eis−tkz and y ∈ R2 such that: ‖x− y‖ ≤ ρi(tkz+1 −
tkz ) = ρi(h), as ρi is given in Lemma 5.2. Then, it holds that y ∈ Eis−tkz+1

.

Proof. The proof can be found in Appendix B.5.

Lemma 5.5. Let s ≥ tkz . The difference between two estimated trajectories êi(s;
ui(·), ei(tkz+1)), êi(s; ui(·), ei(tkz )) at time s, starting from from initial points tkz+1 ,
tkz , respectively, under the same control input ui(·), is upper bounded by:

‖êi(s;ui(·), ei(tkz+1))− êi(s;ui(·), ei(tkz ))‖ ≤ ρi(tkz+1 − tkz ) = ρi(h). (5.23)

Proof. The proof can be found in Appendix B.6.

Theorem 5.1. Suppose that Assumptions 5.1-5.4 hold. If the ROCP is feasible
at time tk, then, the closed loop system (5.9) of agent i, under the control input
(5.15), starting its motion at time tk = t0 + kT from region P (i, k), is Input to
State Stable (ISS) (for ISS see [27]) and its trajectory converges to the admissible
positively invariant terminal set Ei exactly at time tk + T , if it holds that

ρi(Tz) ≤ ρ̄i ,
α1,1 − α2,i

LVi
. (5.24)

Proof. The proof consists of two parts: in the first part it is established that initial
feasibility implies feasibility afterwards. Based on this result it is then shown that
the error ei(t) converges to the terminal set Ei. The feasibility analysis as well as
the convergence analysis can be found in Appendix B.7.
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Assumption 5.4 is common in the NMPC literature. Many methodologies on
how to compute Φi and controllers uf,i = κi(ei), if they exist, have been proposed.
We refer the reader to [126, 134]. Regarding the initial feasibility, numerical tools
(e.g. [128]) can be utilized in order to solve the ROCP and check if the problem is
feasible at time tk.

Remark 5.8. The term ρ̄i, i ∈ V gives an upper bound on the deviation of the
trajectories of the neighboring agents of agent i from their real values. If this bound
is satisfied, agent i can transit between the corresponding two neighboring regions,
provided the ROCP is feasible at tkz .

Remark 5.9. It should be noted that, due to the nonlinear coupling terms fi(xi, x̄i)
and the desired connectivity specifications, some of the ROCPs for k ∈ N might not
have a feasible solution. Let i′ ∈ V, k′ ∈ N, ˜̀′ ∈ L represent an agent i′ that at time
step tk′ = t0 + k′T is desired to transit from region P (i′, k′) to region P̃ (i′, k′, ˜̀′). If
the ROCP

O(k′, xi′(t), x̄i′(t), P (i′, k′), ˜̀′, x
i′,k′,˜̀′,des), t ∈ [tk′z , tk′z + Tz],

has no solution, then there does not exist admissible controller that can drive agent
i′ from P (i′, k′) to region P̃ (i′, k′, ˜̀′). Our goal, through the proposed approach, is
to seek all the possible solutions of the ROCP, which implies to seek for all possible
transitions that will form later the individual WTS Ti of each agent. In this way,
the resulting WTS Ti will capture the coupling dynamics (5.1) and the transition
possibilities of agent i in the best possible way.

Generating the WTSs

Each agent i ∈ V solves the ROCP (5.11a)-(5.11d) for every time interval [tkz , tkz +
Tz], k ∈ N, for all the desired neighboring regions P̃ (i, k, ˜̀), ˜̀∈ L. This procedure is
performed by off-line simulation, i.e., at each sampling time tkz , z ∈M, each agent
exchanges information about its new state with its neighbors and simulates the
dynamics (5.9). Between the sampling times the estimation ˆ̄xi is considered to be a
disturbance, as discussed earlier.

Algorithm 1 provides the off-line procedure in order to generate the transition
relation for each agent. At time t0 each agent i calls the algorithm in order to compute
all possible admissible controllers to all possible neighboring regions of the workspace.
The term Transit, which is the output of the algorithm, is a matrix of control input
sequences for all pairs of neighboring regions in the workspace, initialized at sequences
of zeros. The function Point2Region(·) maps the point xi(tk) to the corresponding
region of the workspace. The function Sampling(·) takes as input the interval
[tk, tk+T ] and returns the m+1 samples of this interval. The notation (u?i )kz stands
for the z-th element of the vector (u?i ). The function OptSolve(k, xi(t), x̄i(t), p, ˜̀)
(i) solves the ROCP and the function UpdateStates(xi, x̄i) updates the states of
agent i and its neighbors after every sampling time. If the OptSolve function does
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Algorithm 1 CreateTransitionRelation(·)
1: Input: i, xi(t0), x̄i(t0);
2: Output: Transit; . Matrix with regions\control inputs;
3:
4: Transit← zeros(|I|, 6); k = 0; Flag = False;
5: List← {Point2Region(xi(t0))}; . Initialize;
6: while List 6= ∅ do
7: for p ∈ List do . p is a region of the List;
8: for ˜̀∈ L do
9: t← Sampling(tk, tk + T );

10: for tkz ∈ t, z ∈M do
11: (u?i )kz ← OptSolve(k, xi(t), x̄i(t), p, ˜̀);
12: UpdateStates(xi, x̄i);
13: if (u?i )kz = ∅ then . @ controller;
14: Flag = True; . search next region;
15: break;
16: end if
17: end for
18: if Flag = False then
19: u?i ← {(u?i )kz}z∈M . ui found;
20: Transit(p, ˜̀)← u?i ;
21: List← List ∪ P̃ (i, k, ˜̀)
22: else
23: Flag = False;
24: end if
25: end for
26: List← List\p;
27: k = k + 1;
28: end for
29: end while

not return a solution, then there does not exist an admissible control input that
can drive agent i to the desired neighboring region. After utilizing Algorithm 1, the
WTS of each agent is defined as follows:

Definition 5.4. The motion of each agent i ∈ V in the workspace is modeled by the
WTS Ti = (Si, Sinit

i , Acti, −→i, di, Σi, Li) where: Si = {D`}`∈I is the set of states
of each agent; Sinit

i = P (i, 0) ⊆ Si is a set of initial states defined by the agents’
initial positions xi(t0) ∈ P (i, 0) in the workspace; Acti is the set of actions containing
the union of all the admissible control inputs ui ∈ Ui that are a feasible solution to
the ROCP and can drive agent i between neighboring regions; −→i⊆ Si ×Acti × Si
is the transition relation. We say that (P (i, k), ui, P̃ (i, k, ˜̀)) ∈−→i, k ∈ N, ˜̀∈ L if
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there exist an admissible controller ui ∈ Acti which at step k drives the agent i from
the region P (i, k) to the desired region P̃ (i, k, ˜̀). Algorithm 1 gives the steps how
the transition relation can be constructed. di :−→i→ R≥0, is a map that assigns
a positive weight (duration) to each transition. The duration of each transition
is exactly equal to T ; Σi, is the set of atomic propositions; Li : Si → 2Σi , is the
labeling function.

The individual WTSs of the agents will allow us to work directly in the discrete
level and design sequences of controllers that solve Problem 5.1. Every WTS Ti, i ∈ V
generates timed runs and timed words of the form rti = (ri(0), τi(0)) (ri(1), τi(1)) . . .,
wti = (wi(0), τi(0)) (wi(1), τi(1)) . . ., respectively, over the set 2Σi with wi(µ) =
Li(ri(µ)), τi(µ) = µT, ∀ µ ≥ 0. The transition relation −→i along with the output
of the Algorithm 1, i.e, Transit(·), allows each agent to have all the necessary
information in order to be able to make a decentralized plan in the discrete level
that is presented hereafter. The relation between the timed words that are generated
by the WTSs Ti, i ∈ V with the timed service words produced by the trajectories
xi(t), i ∈ V, t ≥ 0 is provided through the following remark:

Remark 5.10. By construction, each timed word produced by the WTS Ti is a
relaxed timed word associated with the trajectory xi(t) of the system (5.1). Hence,
if we find a timed word of Ti satisfying a formula ϕi given in MITL, we also find
for each agent i a desired timed word of the original system, and hence trajectories
xi(t) that are a solution to the Problem 5.1. Therefore, the produced timed words
of Ti are compliant with the relaxed timed words of the trajectories xi(t).

5.4.2 Controller Synthesis
The proposed controller synthesis procedure is described with the following steps:

1. N TBAs Ai, i ∈ V that accept all the timed runs satisfying the corresponding
specification formulas ϕi, i ∈ V are constructed.

2. A Büchi WTS T̃i = Ti ⊗Ai (see Definition 5.5 below) is constructed for every
i ∈ V. The accepting runs of T̃i are the individual runs of Ti that satisfy the
corresponding MITL formula ϕi, i ∈ V.

3. The abstraction procedure allows to find an explicit feedback law for each
transition in Ti. Therefore, an accepting run r̃ti in Ti that takes the form of a
sequence of transitions is realized in the system in (5.1) via the corresponding
sequence of feedback laws.

Definition 5.5. Given a WTS Ti = (Si, Sinit
i , Acti,−→i, di,Σi, Li), and a TBA

Ai = (Qi, Qinit
i , Ci, Invi, Ei, Fi,Σi,Li) with |Ci| clocks and let Cmax

i be the largest
constant appearing in Ai. Then, we define their Büchi WTS T̃i = Ti ⊗ Ai =
(S̃i, S̃init

i , Ãcti, i, d̃i, F̃i,Σi, L̃i) as follows:



5.4. Main Results 73
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Figure 5.6: A graphical illustration of the proposed framework.

• S̃i ⊆ {(si, qi) ∈ Si ×Qi : Li(si) = Li(qi)} × T|Ci|∞ .

• S̃init
i = Sinit

i ×Qinit
i × {0}|Ci|.

• Ãcti = Acti.

• (q̃, acti, q̃′) ∈ i iff

◦ q̃ = (s, q, ν1, . . . , ν|Ci|) ∈ S̃i,
q̃′ = (s′, q′, ν′1, . . . , ν′|Ci|) ∈ S̃i,

◦ acti ∈ Acti,
◦ (s, acti, s′) ∈−→i, and
◦ there exists γ,R, such that (q, γ,R, q′) ∈ Ei, ν1,. . .,ν|Ci| |= γ, ν′1,. . .,ν′|Ci| |=
Invi(q′), and for all i ∈ {1, . . ., |Ci|}

ν′i =


0, if ci ∈ R,
νi + di(s, s′), if ci 6∈ R and

νi + di(s, s′) ≤ Cmax
i ,

∞, otherwise.

Then, d̃i(q̃, q̃′) = di(s, s′).

• F̃i = {(si, qi, ν1, . . . , ν|Ci|) ∈ Qi : qi ∈ Fi}.
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• L̃i(si, qi, ν1, . . . , ν|Ci|) = Li(si).

Each Büchi WTS T̃i, i ∈ V is in fact a WTS with a Büchi acceptance condition
F̃i. A timed run of T̃i can be written as r̃ti = (qi(0), τi(0))(qi(1), τi(1)) . . . using the
terminology of Definition 2.11. It is accepting if qi(µ) ∈ F̃i for infinitely many j ≥ 0.
An accepting timed run of T̃i projects onto a timed run of Ti that satisfies the local
specification formula ϕi by construction.

Lemma 5.6. Consider an accepting timed run r̃ti = (qi(0), τi(0))(qi(1), τi(1)) . . .
of the Büchi WTS T̃i defined above, where qi(µ) = (ri(µ), si(µ), νi,1, . . . , νi,|Ci|) de-
notes a state of T̃i, for all µ ≥ 0. The timed run r̃ti projects onto the timed run
rti = (ri(0), τi(0))(ri(1), τi(1)) . . . of the WTS Ti that produces the timed word w(rti) =
(Li(ri(0)), τi(0))(Li(ri(1)), τi(1)) . . . accepted by the TBA Ai via its run χi =
si(0)si(1) . . .. Vice versa, if there exists a timed run rti = (ri(0), τi(0))(ri(1), τi(1)) . . .
of the WTS Ti that produces a timed word w(rti) = (Li(ri(0)), τi(0))(Li(ri(1)), τi(1)) . . .
accepted by the TBA Ai via its run χi = si(0)si(1) . . . then there exist the ac-
cepting timed run r̃ti = (qi(0), τi(0))(qi(1), τi(1)) . . . of T̃i, where qi(z) denotes
(ri(z), si(z), νi,1, . . . , νi,|Ci|) in T̃i.

The proposed framework is depicted in Figure 5.6. The dynamics (5.1) of each
agent i is abstracted into a WTS Ti (orange rectangles). Then the product between
each WTS Ti and the TBA Ai is computed according to Definition 5.5. The TBA Ai
accepts all the words that satisfy the formula ϕi (blue rectangles). For every Büchi
WTS T̃i the controller synthesis procedure that was described in this Section (red
rectangles) is performed and a sequence of accepted runs {r̃t1, . . . , r̃tN} is designed.
Every accepted run r̃ti maps into a decentralized controller ui(t) which is a solution
to Problem 5.1.

Proposition 1. The solution that we obtain from Steps 1-5, if one found, gives a
sequence of controllers u1, . . . , uN that guarantees the satisfaction of the formulas
formulas ϕ1, . . . , ϕN of the agents 1, . . . , N respectively, governed by dynamics as
in (5.1). Thus, we solved Problem 5.1.

5.4.3 Complexity
In the proposed abstraction technique 6N MPC optimization problems are solved for
every time interval t ∈ [tk, tk+T ]. Assume that the desired horizon for the system to
run is M steps i.e. the timed sequence S is written as: S = {t0, t1 = t0 +T, . . . , tM =
t0 +MT}. Then the complexity of the abstraction is M6N . As for the controller
synthesis framework now we have the following. Denote by |ϕ| the length of an MITL
formula ϕ. A TBA Ai, i ∈ V can be constructed in space and time 2O(|ϕi)|, i ∈ V (O
stands for the “big O” from complexity theory). Let ϕmax = max{|ϕi}, i ∈ V be the
MITL formula with the longest length. Then, the complexity of Step 1 is 2O(|ϕmax)|.
The model checking of Step 2 costs O(|Ti|2|ϕi|), i ∈ V where |Ti| is the length of the
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Figure 5.7: Evolution of the agents’ trajectories up to time 6T in the workspace W .
Each point-to-point transition has time duration T = 3. The depicted timed runs
with red, green and magenta, of agents 1, 2 and 3, satisfy the formulas ϕ1, ϕ2 and ϕ3,
respectively, while the agents remain connected.

WTS Ti i.e., the number of its states. Thus, O(|Ti|2|ϕi|) = O(|Si|2|ϕi|) = O(|I|2|ϕi|),
where |I| is the number of cells of the cell decomposition D. The worst case of Step
2 costs O(|I|2|ϕmax|) due to the fact that all WTSs Ti, i ∈ I have the same number
of states. Therefore, the complexity of the total framework is O(M |I|6N2|ϕmax|).

5.5 Simulation Results

For a simulation example, a system of three agents with xi ∈ R2, i ∈ V =
{1, 2, 3}, N1 = {2, 3} N2 = {1, 3}, N3 = {1, 1} is considered. The workspace
W = [−10, 10] × [−10, 10] ⊆ R2 is decomposed into hexagonal regions with
R = 1, rh =

√
3

2 , which are depicted in Figure 5.7. The agents’ initial positions are
set to x1(0) = (0, 10rh), x2(0) = (−6,−8rh) and x3(0) = (7.5,−7rh). The sensing
radius is r = 18. The dynamics are set to: ẋ1 = −2x1 +x2 +x3− sin2(x1−x2) +u1,
ẋ2 = −2x2 + x1 + x3 − sin2(x2 − x1) + u2 and ẋ3 = −2x3 + x1 + x2 + u3. The
time step is T = 3. The specification formulas are set to ϕ1 = ♦[15,27]{red}, ϕ2 =
♦[7.5,22]{green}, ϕ3 = ♦[0,19]{grey} respectively. We set: Qi, Pi, Ri = I2,∀i ∈ V.
Figure 5.7 shows a sequence of transitions for agents 1, 2 and 3 which form the
accepting timed words r̃t1, r̃t2 and r̃t3, respectively. Every timed word maps to a
sequence of admissible control inputs for each agent, which is the outcome of solving
the ROCPs. The agents remain connected for all t ∈ [0, 6T ]. The simulations were
carried out in MATLAB Environment by using the NMPC toolbox [128], on a
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desktop with 8 cores, 3.60GHz CPU and 16GB of RAM.

5.6 Conclusions

A systematic method of both decentralized abstractions and controller synthesis
of a general class of coupled multi-agent systems has been proposed in which
timed temporal specifications are imposed to the system. The solution involves a
repetitive solving of an ROCP for every agent and for every desired region in order
to build decentralized Transition Systems that are then used in the derivation of
the controllers that satisfy the timed temporal formulas.



Chapter 6

Probabilistic Control Synthesis of
Multi-Agent Systems

This chapter presents a fully automated procedure for controller synthesis for multi-
agent systems under the presence of actuator and sensor uncertainties. We model
the motion of each of the N agents in the environment as a Markov Decision
Process (MDP) and we assign to each agent one individual high-level formula
given in Probabilistic Computational Tree Logic (PCTL). Each agent may need
to collaborate with other agents in order to achieve a task. The collaboration is
imposed by sharing actions between the agents. We aim to design local control
policies such that each agent satisfies its individual PCTL formula. The proposed
algorithm builds on clustering the agents, MDP products construction and controller
policies design. We show that our approach has reduced computational complexity
than the centralized case, which traditionally suffers from very high computational
demands.

6.1 Introduction

Most of the existing formal synthesis frameworks are based on the discretization of
the agent’s motion in a partitioned environment to a finite TS (via the abstraction
process that was presented through the previous chapters) under the following
assumptions: First, the measurements of the current state are accurate. Second,
the transition system is either purely deterministic (namely, each control action
enables a unique transition) or purely nondeterministic (namely, each control action
enable multiple transitions). However, in realistic applications of robotic systems,
noisy sensors and actuators can cause both of the aforementioned assumptions to be
invalid. Motivated by this, we aim to model the multi-agent system in a probabilistic
way such that the above two issues are taken into consideration.

Some recent works model the system in a probabilistic way and imposes high-
level specifications, given in Linear Temporal Logic (see e.g., [135–139]). In [140],
the authors modeled the system with an MDP and computed policies such that

77
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the satisfaction of a formula given in MITL, is maximized. Other works model the
system in a probabilistic way with MDPs and introduce high-level tasks in PCTL
(see e.g., [141–144]). However, all these works are restricted to single agent planning
and they cannot be extended to multi-agent systems in a straightforward way since
in the multi-agent case potential couplings may occur among the agents.

By extending these works to multi-agent systems, and at the same time handling
an approach in which the system noise, model errors and external disturbances is
explicitly considered, in this work we consider that each agent is modeled as a MDP
and the task specifications are given in PCTL formulas. Motivated by the fact that
in real applications, the agents (robots) are required to collaborate with each other
to perform a task, we assume that there are agents in the system that are dependent
to each other. They need to communicate, collaborate through sharing a common
action in order to achieve a desired task.

The main contribution of the paper is to develop a strategy for controlling
a general framework of N individual MDPs with respect to individual agents’
specifications given in PCTL formulas. The proposed solution can handle the
dependencies between the agents by considering agents clustering and MDP product
construction and has provably better complexity than the centralized approach.
When applied to robotic systems, our approach provides a framework for multi-robot
control from temporal logic specifications with probabilistic guarantees. To the best
of the authors’ knowledge this is the first work that addresses the cooperative task
planning for multi-agent systems under probabilistic temporal logic specifications in
the presence of dependencies between the agents.

This chapter is divided into three parts. Section 6.2 provides the modeling of
the system and the problem statement. Section 6.3 provides the technical details of
the solution. Finally, conclusions are discussed in Section 6.4.

6.2 Problem Formulation

6.2.1 System Model and Abstraction

Consider a multi-agent team with N ≥ 2 agents operating in the bounded workspace
W ⊆ Rn. Let V = {1, . . . , N} denote the index set of the agents. The workspace
W =

⋃
`∈W

γ` is partitioned using a finite number (assume W ) of regions of interest

γ1, . . . , γW . Denote by γi` an variable indicating that agent i is occupying the region
γ`, where i ∈ V, ` ∈ W.

Assumption 6.1. We assume here that an abstraction of the dynamics of each
robot into a MDP is given, and that a low level continuous time controller that
allows each robot to transit from one region γ` to an adjacent region γl with `, l ∈ W ,
can be designed. It is also assumed that the probabilities of these transitions are
known. This modeling has been also considered in [142].
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Definition 6.1. The motion of each agent i ∈ V in the workspace can be described
by a Markov Decision Process (MDP) Mi = (Si, si0, Acti, Ti) where:

• Si =
{
γi1, γ

i
2, . . . , γ

i
W

}
is the set of states of agent i. The number of states for

each agent is |Si| = W , meaning that Si includes all regions within W.

• si0 ∈ Si is the initial state of agent i (the initial region where agent i may
start). Note that the initial state is known and deterministic, i.e., we know
exactly the region from which each agent starts its motion.

• Acti is a finite set of actions (controls).

• Ti : Si → 2Acti×Σ(Si) is the transition probability function.

Remark 6.1. We investigate here, under which conditions two or more agents
are visiting simultaneously a specific region of the workspace. Consider a subset
{i1, . . . , ic} ⊆ V, c ≥ 2 of agents of the system under consideration. Let

ri1 = si10 s
i1
1 s

i1
2 . . . si1k . . . s

i1
n ,

...
ric = sic0 s

ic
1 s

ic
2 . . . sick . . . s

ic
n ,

be the finite paths of length n that are executed by the corresponding MDPs
M1, . . . ,Mc, respectively, where sjz ∈ Sz, ∀z ∈ {0, . . . , n}, j ∈ {i1, . . . , ic}. Then, if
there exists k ≥ 1 such that for all the k-th elements of the above runs (in the same
position at every path) it holds that si1k = · · · = sick = smeet

k , then we say that the
agents {i1, . . . , ic} are visiting simultaneously the same region sk. If there does not
exist such region smeet

k , then the agents cannot meet simultaneously to one region.

6.2.2 Handshaking Actions
The motivation for introducing dependencies in the multi-agent system comes from
real applications where more than one agents (robots) need to collaborate with
each other in oder to perform a desired task. For example, imagine two aerial
manipulators that are required to meet and grasp an object simultaneously and
deliver it to a specific location in a warehouse.

In order to be able to introduce dependencies in the actions between the agents,
we write the action set of each agent as: Acti = {Πi, Π̂i}, i ∈ V , where Πi is a finite
set of actions that the agent i need to execute in collaboration with other agents
(handshaking actions) and Π̂i is a finite set of actions that the agent i executes
independently of the other agents (independent actions). For the independent actions
it holds that:

Π̂i ∩ Π̂j = ∅,∀i 6= j, i, j ∈ V.

The independent actions can always be executed without any constraints. On
the other hand, for the handshaking actions, we have the following requirements:
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• First, the agents are required to meet and occupy the same region of the
workspace (not necessarily a specific region).

• Once they meet, they need to execute simultaneously the same action.

• All the agents that share an action are required to execute it in order for the
action to be completed properly.

Formally, the handshaking actions are defined as follows:

Definition 6.2. (Handshaking Actions) Let {i1, . . . , ic} ⊆ V, c ≥ 2 be a set of
agents that need to collaborate in order to execute simultaneously a task under the
action α. The following two properties should hold in order for α to be well-posed
handshaking action:

1. α ∈
⋂

i∈{i1,...,ic}

Πi.

2. Let the following finite paths of length n:

ri1 = si10
α
i1
0−→ . . . −→ si1k

α−→ si1k′ . . .
α
i1
n−1−→ si1n ,

...

ric = sic0
αic0−→ . . . −→ sick

α−→ sick′ . . .
αic
n−1−→ sicn ,

be executed by the MDPs Mi1 , . . . ,Mic respectively. Here, si1k , . . . , s
ic
k are

the regions that the agents i1, . . . , ic should occupy, respectively, in order to
execute the handshaking action α simultaneously. Then, there should exist at
least one index k ≥ 0 such that si1k = · · · = sick = smeet

k and δ(sjk, α, s
j
k′) > 0

for at least one sjk′ ∈ Post(sjk, α) for every agent j ∈ {i1, . . . , ic}.

Notice that the same condition for a state smeet
k as in condition (2) was mentioned

in Remark 6.1, but here the existence of a common action α is also required. It
should be also noted that every region of the workspace in which the agents can
potentially meet, can serve as a region that a handshaking action can be executed
(if such an action exists).

6.2.3 Dependencies
Suppose that one agent i receives a cooperative task that involves other agent’s
j ∈ V\{i} participation. This means that both agents need to execute the same
action at the same region so as for the task to be performed. The dependencies are
formally defined as:

Definition 6.3. The agents i, j ∈ V are called dependent if one the following
statements holds:
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1. Agent i depends on agent j if Πi ∩Πj 6= ∅, with Πi ∈ Acti and Πj ∈ Actj .

2. Agent j depends on agent i if Πj ∩Πi 6= ∅, with Πj ∈ Actj and Πi ∈ Acti.

3. There exist at least one region smeet
k , k ≥ 0 of the workspace such that the

second condition of Definition 6.2 holds.

Conditions 1, 2 can be checked by comparing all the elements of the sets
Πi,Πj ,∀i, j ∈ V one by one. Condition 3 can be checked by using graph search
algorithms.

Remark 6.2. It should be noticed from the above definitions that all the agents
that share an action, they are required to meet and execute it simultaneously.

Remark 6.3. Due to fact that the control policies are defined over finite paths,
the handshaking actions are defined with respect to finite paths as well. Therefore,
the graph search algorithm for condition (3) is searching into a finite graph.

Assumption 6.2. It is assumed that there exists at least two agents that are
dependent. Otherwise, there exist no dependencies between the agents and the
problem that is later defined can be straightforwardly solved by solving the controller
synthesis methodology of Section 6.3 for each agent independently.

6.2.4 Problem Statement

We formally define here the problem that we aim to solve in this chapter:

Problem 6.1. Given N agents performing in a workspace W, under the Assump-
tions 6.1, 6.2, individual task specification formulas ϕ1, . . . , ϕN over the actions
Πi ∪ Π̂i, i ∈ V given in PCTL with semantics as in Section 2.4, synthesize individual
control policies µ1, . . . , µN (if there exists one) which guarantee the satisfaction of
the formulas ϕ1, . . . , ϕN respectively.

Remark 6.4. Traditionally, the PCTL semantics are defined over a set of atomic
propositions. However, in this chapter, we aim to introduce dependencies over the
actions among the agents. Therefore, the PCTL semantics are defined over a set of
actions.

Remark 6.5. Among the three category of problems that are presented in Section
2.4, in this chapter, we are mainly interested in the Controller Synthesis problem i.e.
Given an MDP M and a property ϕ, find all the control policies under which the
formula is satisfied. The motivation for that is the following: if one control policy
fails to guarantee the satisfaction of a formula, it may exists another policy under
which the formula is satisfied.
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6.3 Control Synthesis

6.3.1 Overview
An overview of the proposed solution is given as follows:

• Step 1: First, the dependencies among the agents are modeled as a dependency
graph (see Section 6.3.2). The agents are split into clusters and each cluster
contains the agents that are dependent according to Definition 6.3.

• Step 2: For each cluster of agents, the mutual specification ϕm and the product
MDP M̃ are defined (see Section 6.3.3).

• Step 3: By utilizing the controller synthesis algorithms of Section 6.3.6, we
design a control policy µ̃ of each cluster that guarantees the satisfaction of ϕm
(if such a control policy exists). We provide in Section 6.3.4 the definition of
successful control policies, which project onto local control policies µ1, . . . , µN
for each agent, which finally are a solution to Problem 1.

An algorithm describing all the steps of the proposed procedure is given in Section
6.3.5. Probabilistic model checking algorithms, which can compute all the control
policies under which a PCTL formula ϕm is satisfied, are presented in Section 6.3.6.
The computational complexity of the proposed framework is discussed in Section
6.3.7.

Problem 6.1 can be solved in a centralized way by computing the product of
all individual MDPs Mi, i ∈ V (see Definition 6.7) and performing the proposed
methodology of this paper to the centralized system without any clustering among
the agents. A comparison of the computational complexity of the proposed framework
that exploits the potential sparsity of dependencies with the centralized approach is
discussed in Section 6.3.7.

6.3.2 Modeling the Dependencies
Based on the dependency relation of the Definition 6.3, the dependency graph
associated with the handshaking actions Πi, i ∈ V is defined as follows:

Definition 6.4. The dependency graph G = (V, E), is an undirected graph that
consists of the set of vertices V in which each of the agents is a node of the graph
and the edge set E which is defined as follows:

E = {{i, j} : i is dependent to j and i, j ∈ V, i 6= j}.

In order to proceed, the following definition is required:

Definition 6.5. [58] Let G = (V, E) be an undirected graph. Then every graph
G′ = (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E if called a subgraph of the graph G.
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Figure 6.1: An example of a dependency graph G = (V, E) and its subgraphs for
N = 6 agents.

Definition 6.6. The set C = {C` : ` ∈ M} ⊆ V, where M = {1, . . . ,m}, forms
a dependency cluster if and only if for every i, j ∈ C there is a path from node i
to node j in the dependency graph G; m denotes the number of the dependency
clusters.

Define the function f : V →M which maps each agent to the index of the cluster
that it belongs to. It can be observed that

⋃
`∈M

C` = V and
∑
`∈M
|C`| = |V| = N .

Each agent i ∈ V for which there does not exist j ∈ V such that j ∈ Cf(i) will be
called an independent agent. For an independent agent it holds that |Cf(i)| = 1. From
Definition 6.6, it follows that every dependency cluster C` ∈ C, ` ∈M is the vertex
set of the subgraphs G(`) = (C`, E`), E` ⊆ E , ` ∈M of the system graph G. Loosely
speaking, two agents belong to the same cluster when they are directly dependent or
transitively dependent by a dependency chain. An example of a dependency graph
and dependency clusters is given as follows:

Example 6.1. Consider N = 6 agents with V = {1, . . . , 6}, E = {{1, 2}, {3, 4},
{4, 5}}. The m = 3 clusters are given as: C1 = {1, 2}, C2 = {3, 4, 5} and C3 =
{6} and the corresponding subgraphs G(1) = (C1, E1 = {1, 2}),G(2) = (C2, E2 =
{{3, 4}, {4, 5}}) and G(3) = (C3, E3 = ∅). Moreover, f(1) = f(2) = 1, f(3) = f(4) =
f(5) = 2, f(6) = 3. The dependency graph is depicted in Figure 6.1.

According to the mathematical derivation above, Assumption 6.2 is modified as
follows:

Assumption 6.3. There exists at least one dependency cluster C`, ` ∈M (as was
defined in Definition 6.6) of the dependency graph G of the under consideration
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multi-agent system, which contains at least two dependent agents. Thus, there exists
` ∈M such that: |C`| = 2, if N = 2 and |C`| ∈ [2, N − 1], if N > 2.

By employing the above computation, the initial multi-agent system is modeled
as m subgraphs G`, ` ∈ M which capture the dependencies between the agents,
as defined in Definition 6.3. This forms a convenient modeling of the system’s
dependencies in order to compute the product MDP of every subsystem ` ∈M in
the next Section.

6.3.3 Product Markov Decision Process
Define the mutual specification of a cluster of agents C` by:

ϕ`m =
∧
i∈C`

ϕi, ` ∈M, (6.1)

over the set of actions
⋃
i∈C`

(
Πi ∪ Π̂i

)
. If the satisfaction of ϕ`m for each cluster C` is

guaranteed, it holds by definition that the satisfaction of all the individual formulas
ϕi, i ∈ V is guaranteed as well. Thus, a method for finding a team control policy
that guarantees the satisfaction of the formula ϕ`m, ` ∈M should be provided.

In the sequel, we construct a product MDP that captures the collaborative
behavior of all the agents within a cluster. Having M̃`, allow us to synthesize a
control policy µ̃ for C`, which guarantees the satisfaction of the collaborative formula
ϕ`m. Subsequently, the team control policy µ̃` can be projected onto the local agents’
control policies µ1, . . . , µN which are a solution to Problem 1.

Definition 6.7. (Product MDP) The product MDP M̃`, ` ∈M for the cluster of
agents C` is a tuple (S̃`, s̃`0, Ãct`, T̃`) where:

• S̃` = ×
i∈C`

Si is the set of states, where× stands for the Cartesian product

operator, as defined in Chapter 2.

• s̃`0 = ×
i∈C`

si0 is the initial state.

• Ãct` =
⋃
i∈C`

Acti =
⋃
i∈C`

{
Πi, Π̂i

}
is the set of actions.

• T̃` : S̃` → 2Ãct`×Σ(S̃`) is the transition probability function for the product
system. Similar to δ of Definition 2.17, we define δ̃(s̃, α̃, s̃′) ∈ [0, 1] the proba-
bility of transitioning from the state s̃ to the state s̃′ under the action α̃. Let
C` = {i1, . . . , i|C`|} be an enumeration of the agents of the cluster C`. Then,
δ̃` is defined as follows:
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1. if α ∈
⋂
j∈C`

A(sj) then

δ̃((si1 , . . . , si|C`|), α, (s
′
i1 , . . . , s

′
i|C`|

)) =
∏
j∈C`

δj(sj , α, s′j).

2. δ̃((s̃i1 , . . . , s̃k1 , . . . , s̃kν , . . . , s̃i|C`|), α, (s̃i1 , . . . , s̃
′
k1
, . . . , s̃′kν , . . . , s̃i|C`|)) =

ν∏
j=1

δkj (skj , α, s′kj ) if

α ∈

 ν⋂
j=1
A(skj )

∖ ⋃
z∈C`\{k1,...,kν}

A(sz)

 ,
for kj ∈ C`, j ∈ {1, . . . , ν}.

Intuitively, 1 denotes that all the agents i1, . . . , i|C`| of the cluster |C`| are located
in the states si1 , . . . , si|C`| respectively, and they are simultaneously transiting to
the states s′i1 , . . . , s

′
i|C`|

with action α; 2) denotes that among all the agents of
the cluster C`, only the agent {k1, . . . , kν} ( C` are transiting simultaneously to
the states s′k1

, . . . , s′kν respectively; 2) can not be handshaking action since for the
handshaking action all the agents of the cluster should transit simultaneously to the
next state. According to Definition 6.2, in order for 1 to be a handshaking transition,
it is also require that si1 = . . . = si|C`| .

Remark 6.6. In the case of a cluster ` ∈ M that contains an independent agent
i ∈ V with the property |C`| = |Cf(i)| = 1, the product MDP M̃` coincides with
the individual MDP Mi of Definition 6.1, i.e., M̃` ≡Mi.

The infinite path r̃, the finite path ρ̃, the control policy µ̃ and the set of all
infinite and finite paths F̃Path and ĨPath, are defined similarly to Section 2.4.

6.3.4 Designing the Control Policies µ̃

The product MDP M̃`, ` ∈ M of each cluster captures the paths and the control
policies of the agents that belong to the same cluster and they are required to
collaborate for achieving a task or acting independently.

By employing the controller synthesis algorithms (see Section 6.3.6), the control
policies µ̃` for the team of agents in each cluster can be designed. The algorithms
can compute all the control policies µ̃` that guarantees the satisfaction of formula
ϕ`m from (6.1).

What remains is to project these policies onto the individual control policies of
the agents of each cluster in such a way that they serve as a solution to Problem 1.
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Consider a cluster of agents C` = {i1, . . . , i|C`|}. A control policy µ̃`(ρ̃) =
µ̃`(s̃0s̃1 . . . s̃n) ⊆ Ãct for the finite path ρ̃ = s̃0s̃1 . . . s̃n of length n, where s̃k =
(ski1 , . . . , s

k
i|C`|

), k ∈ {1, . . . , n}, projects onto the local individual control policies
µj(s1

j , . . . , s
n
j ), j ∈ {i1, . . . , i|C`|}, of the agents {i1, . . . , i|C`|} of the cluster C`, ` ∈M.

Note that: µj ⊆ Ãct
∣∣∣∣
j

⊆ Actj , j ∈ {i1, . . . , i|C`|}, and Ãct
∣∣∣∣
j

is the set of actions of

the agent j that are appearing in the set Ãct.
The set µ̃(ρ̃) contains control policies that are either handshaking or independent.

Let us also define the following set of handshaking actions: Succ(α, `) = {α ∈ Πi1 ∩
· · · ∩Πi|C`|

: α ∈ µ̃`(ρ̃)}, which is the subset of µ̃(ρ̃) that contains the handshaking
actions. We need to search now if all the projections µij ,∀j ∈ {1, . . . , |C`|} follow
the handshaking rules of Definition 6.2.

Definition 6.8. (Successful Control Policy) Let µ̃`(ρ̃) = µ̃`(s̃0s̃1 . . . s̃n) ⊆ Ãct be a
control policy of a cluster C`. The control policy µ̃`(ρ̃) is called successful if for all
α ∈ Succ(α, `) it holds that sni1 = · · · = sni|C`|

and δ(snj , α, (snj )′) > 0 for at least one
(snj )′ ∈ Post(snj , α), j ∈ {ii, . . . , i|C`|}.

Define by
SP (`) =

{
µ̃`(ρ̃) ⊆ Ãct : M̃` |= ϕ`m

}
, ` ∈M,

the set of all the control policies that guarantee the satisfaction of the formula ϕ`m.
All the control policies of the set SP needs to be checked if they are successful. If
SP (`) = ∅ for at least one ` ∈ M, then the Problem 6.1 has no solution. The set
SP (`) is computed by employing the algorithms of Section 6.3.6.

6.3.5 Proposed Algorithm
The proposed procedure of solving Problem 6.1 is shown in Algorithm 2. The function
checkDepend() determines the dependent agents according to Definition 6.3. The
product and projection that were introduced in Sections 6.3.3 and 6.3.4, can be
computed by the functions product() and projection(), respectively. The algorithms
of Section 6.3.6 are incorporated in the function controlSynthesis(). By employing
Definition 6.8, the function succPolicy() determines if a sequence of control policies
are successful.

Remark 6.7. Even though our proposed solution is centralized in each cluster, it
is partially decentralized in terms of the whole multi-agent system.

6.3.6 Algorithms for Probabilistic Control Synthesis
In this section, we are investigating algorithms of computing all the control policies
µ̃` ∈ SP (`). Once these control policies are found, then by following Algorithm 2,
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Algorithm 2 - SolveProblem1
1: Input: MDPs: M1, . . . ,MN ;
2: PCTL Formulas: ϕ1, . . . , ϕN ;
3: Output: µ1, . . . , µN
4:
5: C = {C`, ` ∈M} = checkDepend(Act1, . . . , ActN );
6: ϕ`m =

∧
i∈C` ϕi;

7: for z ∈ C` = {i1, . . . , i|C` |} do
8: M̃` = product({Mj , j ∈ C`});
9: SP (`) = controlSynthesis(M̃, ϕ`m);

10: for µ̃` ∈ SP (`) do
11: {µ1, . . . , µN} = projection(M̃`);
12: if succPolicy({µ1, . . . , µN}) = > then
13: solFound = 1;
14: return {µ1, . . . , µN}; . Solution found
15: else
16: Go to line 11; . Search other control policies
17: end if
18: end for
19: if solFound 6= 1 then
20: Problem 1 has no solution;
21: end if
22: end for

the individual policies µj , j ∈ {i1, . . . , i|C`|} can be designed and the Problem 1 is
solved (if there exists a solution). For more details about the algorithms we refer to
[40, 41, 142, 145, 146].
First, define by:

Sat(ϕ`m) = {s ∈ S : s |= ϕ`m},

the set of states that satisfy ϕ`m. Then, for two given PCTL formulas ϕ`m,1, ϕ`m,2
we have the following:

Sat(>) = S,

Sat(π) = {s ∈ S : π ∈ A(s)},
Sat(¬ϕ`m) = S\Sat(ϕ`m),
Sat(ϕ`m,1 ∧ ϕ`m,2) = Sat(ϕ`m,1) ∩ Sat(ϕ`m,2)

Define also the minimum and the maximum probabilities of satisfying the formula
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under the control policy µ for a starting state s:

Probmax(s, ψ) = sup
µ∈M
{Probµ(s, ψ)}, (6.2a)

Probmin(s, ψ) = inf
µ∈M
{Probµ(s, ψ)}. (6.2b)

where M is set of all control policies. It has been proved in [41], that the model
checking problem problem of the operator P./p[ψ] can be reduced to the computation
of (6.2a), (6.2b) according to the following:

• If ./ = {≥, >} then
s |= P./p[ψ]⇔ Probmin(s, ψ) ./ p; (6.3)

• If ./ = {≤, <} then
s |= P./p[ψ]⇔ Probmax(s, ψ) ./ p; (6.4)

For the controller synthesis (as was defined in Section 2.4) of the path operators
P./p[©ϕ`m], P./p[ϕ`m,1U≤kϕ`m,2], we utilize the following Algorithms 3 and 4.

Algorithm 3

If the collaborative formula has the form ϕ`m = P./p[©ϕ`m,1], initially the maximum
probability of satisfying ϕ`m at the state s ∈ S:

Probmax(s, ϕ`m) = max
α∈A(s)

 ∑
s′∈Sat(ϕ`m,1)

δ(s, α, s′)

 , (6.5)

is computed for every s ∈ S. By replacing max with min in (6.5), Probmin(s,©ϕ`m,1)
can be computed. Define the vector Φ(s) = 1, if s ∈ Sat(ϕ`m,1) or Φ(s) = 0, otherwise.
Perform now the matrix multiplication X = T ·Φ; X is a vector whose entries are the
probabilities of satisfying ©ϕ`m,1, where each row corresponds to a state-action pair.
After obtaining the vector X, eliminate the state-actions pairs whose probabilities
are not in the range of ./ p by taking into consideration the conditions (6.3), (6.4).
This operation determines all the states s ∈ S and all the actions µ ∈M that satisfy
the formula ϕ`m.

Algorithm 4

For a collaborative formula of the form φ`m = P./p
[
ϕ`m,1 U≤k ϕ`m,2

]
, define by:

Syes = Sat(ϕ`m,2),
Sno = S\

[
Sat(ϕ`m,1) ∪ Sat(ϕ`m,2)

]
,

Srem = S\(Syes ∪ Sno),
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the states that always satisfy the specification, the states that never satisfy the speci-
fication and the remaining states, respectively. Compute the maximum probability of
satisfying ϕ`m at the state s ∈ S as: Probmax(s, ϕ`m) = 1 or 0, if s ∈ Syes or s ∈ Sno

respectively. For s ∈ s ∈ Srem and k > 0 compute recursively the following:

Probmax(s, ϕ`m, k)

= max
α∈A(s)

( ∑
s′∈Srem

δ(s, α, s′)Probmax(s, ϕ`m, k − 1) +
∑

s′∈Syes

δ(s, α, s′)
)
, (6.6)

with Probmax(s, ϕ`m, 0) = 0. The computation can be carried out in k iterations,
each similar to the process of Algorithm 3. By replacing max with min in (6.6),
Probmin(s, ϕ`m, k) can be computed.

Remark 6.8. The resulting control strategies of the aforementioned algorithms are
stationary. Therefore, the control policies µ̃`(s̃1s̃2 . . . s̃n) depend only to the state
s̃n.

6.3.7 Computational Complexity
According to [30], the time complexity for PCTL control synthesis is polynomial
in the number of states of M and linear in the length of the formula ϕ. Denote by
|ϕ| the length of the formula ϕ in terms of the number of the operator it has e.g.,
|P≥0.5[©{red}]| = 2. The complexity can be expressed mathematically as

O(poly(|M|)|ϕ|κ(ϕ)),

where poly() denotes the polynomial time,

κ(ϕ) = max{k : φ1U≤kϕ2},

is the maximum step bound that appears in a sub-formula of the form ϕ1U≤kϕ2. If
ϕ does not contain any until operators, then κ(ϕ) = 1.

The number of states of the the product MDP in the centralized solution is
|S̃| =

∏
i∈V
|Si| = WN and the corresponding complexity is in the class of

O = O
(
poly(WN )|ϕ`m|κ(ϕ`m)

)
,

where ϕ`m as it is defined in (6.1), for |C`| = N .
The worst case complexity of the proposed framework occurs when one agent

is independent and the other N − 1 agents are dependent to each other. Then,
there exists two clusters ` ∈ {1, 2}: the first cluster contains the independent agent
and the other one contains the remaining agents. The corresponding MDPs have
|S̃`| = |×

i∈C`
Si| = W |C`|, ` ∈ {1, 2} states i.e., W,WN−1 states, respectively. Thus,
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the worst case complexity of our framework is:

Õ = O
(

poly(W )|ϕ1
m|κ(ϕ1

m) + poly(WN−1)|ϕ2
m|κ(ϕ2

m)
)
.

The best case complexity of the proposed framework is when every agent is dependent
to at most one other agent. Formally, if N is odd number then |C`′ | = 1 for only
one `′ ∈ M and |C`| = 2,∀` ∈ M\{`′}. In this case, the best case complexity is in
the class:

Ō = O
( ∑
`∈M\{`′}

[
poly(W 2)|ϕ`m|κ(ϕ`m)

]
+ poly(W )|ϕ`

′

m|κ(ϕ`
′

m)
)

= O
(

poly(W 2)
∑

`∈M\{`′}

[
|ϕ`m|κ(ϕ`m)

]
+ poly(W )|ϕ`

′

m|κ(ϕ`
′

m)
)
.

If N is even number, then previous summation in performed in all the elements
` ∈M. In total, it holds that Ō < Õ < O, which verifies that our proposed framework
achieves significantly better computational complexity than the centralized one.

6.4 Conclusions

We have proposed a systematic method for designing control policies for multi-agent
systems under the presence of uncertainties. We assume that the under consideration
system is under the presence of model uncertainties and actuation failures, thus
the modeling is performed through MDPs. The agents are divided into dependency
clusters which indicate the team of agents that they need to share an action in order
to achieve a desired task. With the proposed framework, each agent is guaranteed
to perform a task given in PCTL formulas. The computational complexity of the
proposed framework is significantly better than the complexity of the centralized
framework.



Chapter 7

Summary and Future Research Directions

This thesis was divided into three main parts, corresponding to Chapter 3 (Part 1),
Chapter 4 and 5 (Part 2) and Chapter 6 (Part 3).

In Chapter 3, we proposed a potential-functions based decentralized control
protocol for multi-agent systems which guarantees formation control with inter-
agent collision avoidance, collision avoidance between the agents and the obsta-
cles/workspace boundary, connectivity maintenance as well as singularity avoidance
of multiple rigid bodies. Simulation results have verified the validity of the proposed
approach. We are currently working towards resolving the issues with Assumption
3.3. The main disadvantage of the proposed control scheme is the requirement
of calculations of derivatives which in practical applications, can be numerically
unstable. A second problem is the fact that a lot of actuation force is required by
the controller. A possible extension could be a framework towards NMPC such that
an optimization problem is solved by each agent at every sampling time, in which
control input constraints can be handled by the optimization problem. Other efforts
will be devoted towards real-time experiments with a multi-agent team consisted of
quad-rotors at the Smart Mobility Lab of KTH.

In Chapter 4, we proposed a systematic method for multi-agent controller
synthesis aiming cooperative planning under high-level specifications given in MITL
formulas. The solution involves a sequence of algorithmic automata constructions
such that not only team specifications but also individual specifications should be
fulfilled. For Chapter 4, future research directions include computational burden
relaxation of the proposed scheme. Robust satisfaction criteria could be also a
possible target framework, i.e., the introduction of metrics of how far away are the
MITL formulas from their satisfaction. A framework that deals with dependencies
in discrete level through atomic propositions, i.e., Σi ∩ Σj 6= ∅, i, j ∈ V with i 6= j,
could be also an interesting topic for further investigation.

In Chapter 5, a systematic method of both decentralized abstractions and
controller synthesis of a general class of coupled multi-agent systems was proposed
in which timed temporal specifications are imposed to the system. The solution
involves a repetitive solving of an ROCP for every agent and for every desired
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region in order to build decentralized Transition Systems that are then used in
the derivation of the controllers that satisfy the timed temporal formulas. For
Chapter 5, future work includes further computational improvement of the proposed
decentralized abstraction method towards finding more efficient methods of robust
controllers in order to deal with the disturbances of the agents. Furthermore, each
agent can be modeled as a rigid body such that the time T in which the agent is
required for performing a transition between two neighboring polygon regions, can
be computed easier. Decentralized event-based communication controllers between
the agents, in order for the communication burden to be relaxed, could be also
applied.

In Chapter 6, we proposed a systematic method for designing control policies
for multi-agent systems under the presence of uncertainties. We assume that the
system is under the presence of model uncertainties and actuation failures, thus
the modeling is performed through MDPs. The agents are divided into dependency
clusters which indicate the team of agents that they need to share an action in order
to achieve a desired task. With the proposed framework, each agent is guaranteed
to perform a task, given in PCTL formulas. The computational complexity of the
proposed framework is significantly better than the complexity of the centralized
framework. For Chapter 6, future efforts will be devoted towards investigating about
stochastic abstractions, which in this chapter is considered be given according to
Assumption 6.1, as well as a more decentralized control framework.

Finally, a multi-agent control design framework that combines time and prob-
ability i.e., a combination of Part 2 and Part 3 of this thesis, could be promising
since it models more accurate the real multi-agent systems.



Appendix A

List of Derivatives for Chapter 3

By introducing the notations x+
i = [p>i , 0, 0, 0]> ∈M, i ∈ V and x+

oz = [p>oz , 0, 0, 0]> ∈
M, z ∈ Z, we obtain the following derivatives:

∇xiϕi(x) = ∇xiγi(x)− ∇xiβi(x)
βi(x)2 , (A.1a)

∇xi (ηij,a) = ∇xi
(
‖pi − pj‖2

)
= 2(x+

i − x
+
j ), (A.1b)

∇xi (ηiz,o) = ∇xi
(
‖pi − poz‖2

)
= 2(x+

i + x+
oz ), (A.1c)

∇xi (ηij,c) = ∇xi
(
−‖pi − pj‖2

)
= −2

(
x+
i − x

+
j

)
, (A.1d)

∂bij,a
∂ηij,a

=
{

φi,a
∂ηij,a

, 0 ≤ ηij,a < d2
i − d

2
ij,a,

0, d2
i − d

2
ij,a ≤ ηij,a,

, (A.1e)

∂biz,o
∂ηiz,o

=
{

φi,o
∂ηiz,o

, 0 ≤ ηiz,o < d2
i − d

2
iz,o,

0, d2
i − d

2
iz,o ≤ ηiz,o,

, (A.1f)

∂bij,c
∂ηij,c

=


0, ηij,c < 0,
φi,c
∂ηij,c

, 0 ≤ ηij,c < d2
i − d

2
ij,a,

0, d2
i − d

2
ij,a ≤ ηij,c,

, (A.1g)

∇xi (bij,a) = 2
(
∂bij,a
∂ηij,a

) (
x+
i − x

+
j

)
, (A.1h)

∇xi (biz,o) = 2
(
∂biz,o
∂ηiz,o

)
x+
i , (A.1i)

∇xi (bij,c) = −2
(
∂bij,c
∂ηij,c

) (
x+
i − x

+
j

)
, (A.1j)

∇xi (biw) = −x+
i , (A.1k)

∇xi (bJi) = [0, 0, 0, 0,−2 sin(θi), 0]>. (A.1l)
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Appendix B

Proofs of Chapter 5

B.1 Proof of Lemma 5.1

Proof. For every e1, e2 ∈ Ei, u ∈ Ui, i ∈ V, the following holds:

|Fi(e1, u)− Fi(e2, u)| = |e>1 Qie1 + u>Riu− e>2 Qie2 − u>Riu|
= |e>1 Qie1 − e>2 Qie2|
= |e>1 Qie1 + e>1 Qie2 − e>1 Qie2 − e>2 Qie2|
= |e>1 Qi(e1 − e2)− e>2 Qi(e1 − e2)|
≤ |e>1 Qi(e1 − e2)|+ |e>2 Qi(e1 − e2)|. (B.1)

By employing the property that:

|x>Ay| ≤ σmax(A)‖x‖‖y‖,∀ x, y ∈ Rn, A ∈ Rn×n, (B.2)

(B.1) is written as:

|Fi(e1, u)− Fi(e2, u)| ≤ σmax(Qi)‖e1‖‖e1 − e2‖+ σmax(Qi)‖e2‖‖e1 − e2‖
= σmax(Qi)(‖e1‖+ ‖e2‖)‖e1 − e2‖

= σmax(Qi)
[

sup
e1,e2∈Ei

{‖e1‖+ ‖e2‖}
]
‖e1 − e2‖

= 2σmax(Qi)
[

sup
ei∈Ei

{‖ei‖}
]
‖e1 − e2‖

= [2ε̄iσmax(Qi)] ‖e1 − e2‖,

which completes the proof.
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B.2 Proof of Lemma 5.2

Proof. Let us denote by:

ui(·) , ui(s; e(tkz )),
ei(s) , ei(s;ui(·), ei(tkz )).

the control input and real trajectory of the system (5.1) for s ∈ [tkz , tkz + Tz]. Also,
denote for sake of simplicity:

êi(s) , êi(s;ui(·), ei(tkz )).

the corresponding estimated trajectory. By integrating (5.1), (5.11b) for the time
interval [tkz , tkz + s] we have the following:

ei(s) = ei(tkz ) +
∫ s

tkz

[gi(ei(s′), x̄i(s′), ui(·))] ds′,

êi(s) = ei(tkz ) +
∫ s

tkz

[
gi(êi(s′), ˆ̄xi(s′), ui(·))

]
ds′,

respectively. Then, we have that:

‖ei(s)− êi(s)‖

=
∥∥∥∥∥
∫ s

tkz

[g(ei(s′), x̄i(s′), ui(·))] ds′ −
∫ s

tkz

[
g(êi(s′), ˆ̄xi(s′), ui(·))

]
ds′

∥∥∥∥∥
=
∥∥∥∥∥
∫ s

tkz

[
f(ei(s′), x̄i(s′)) + ui(s′)− f(êi(s′), ˆ̄xi(s′))− ui(s′)

]
ds′

∥∥∥∥∥
=
∥∥∥∥∥
∫ s

tkz

[
f(ei(s′), x̄i(s′))− f(êi(s′), ˆ̄xi(s′))

]
ds′

∥∥∥∥∥
≤
∫ s

tkz

∥∥∥f(ei(s′), x̄i(s′))− f(êi(s′), ˆ̄xi(s′))
∥∥∥ds′

=
∫ s

tkz

∥∥∥f(ei(s′), x̄i(s′))− f(êi(s′), x̄i(s′)) + f(êi(s′), x̄i(s′))− f(êi(s′), ˆ̄xi(s′))
∥∥∥ds′

≤
∫ s

tkz

∥∥∥f(ei(s′), x̄i(s′))− f(êi(s′), x̄i(s′))
∥∥ds′

+
∫ s

tkz

∥∥∥f(êi(s′), x̄i(s′))− f(êi(s′), ˆ̄xi(s′))
∥∥∥ds′.

By using the bounds of (5.3a)-(5.3b) we obtain:

‖ei(s)− êi(s)‖ ≤
∫ s

tkz

Li
∥∥ei(s′)− êi(s′)∥∥ds′ + ∫ s

tkz

L̄i
∥∥x̄i(s′)− ˆ̄xi(s′)

∥∥ds′. (B.3)
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The following property holds:

‖x̄i − ˆ̄xi‖ =

∑
j∈Ni

‖xj − x̂j‖2
 1

2

,∀i ∈ V, j ∈ Ni.

Then, by combining the last inequality with (5.17) from Property 2, we have that:

‖x̄i − ˆ̄xi‖ =

∑
j∈Ni

(√
3R
)2
 1

2

=
[
Ni

(√
3R
)2
] 1

2

= R
√

3Ni,∀i ∈ V, j ∈ Ni.

By combining the last result with (B.3) we get:

‖ei(s)− êi(s)‖ ≤
∫ s

tkz

Li
∥∥ei(s′)− êi(s′)∥∥ds′ + ∫ s

tkz

L̄i
√

3RNids′

=
∫ s

tkz

Li
∥∥ei(s′)− êi(s′)∥∥ds′ +√3RL̄iNi(s− tkz ). (B.4)

By employing the Gronwall-Bellman from Lemma 2.1, (B.4) becomes:

‖ei(s)− êi(s)‖

≤ R
√

3NiLiL̄i
∫ s

tkz

(s′ − tkz ) exp
[∫ s

s′
Lids

′′
]
ds′ + 2R

√
3NiL̄i(s− tkz )

= R
√

3NiL̄i
∫ s

tkz

(s′ − tkz )eLi(−s
′+s)ds′ +

√
3RL̄iNi(s− tkz )

= −R
√

3NiL̄i(s− tkz ) +R
√

3NiL̄i(s− tkz ) +
√

3RL̄iNi
∫ s

tkz

eLi(−s
′+s)ds′

= R
√

3NiL̄i
∫ s

tkz

eLi(−s
′+s)ds′

= −R
√

3NiL̄i
Li

[
1− eLi(s−tkz )

]
= R
√

3NiL̄i
Li

[
eLi(s−tkz ) − 1

]
. (B.5)

which leads to the conclusion of the proof.

B.3 Proof of Property 5.2

Proof. Let s ∈ [tkz , tkz + Tz]. Let us also define:

zi(s) , ei(s)− êi(s;ui(s; e(tkz )), ei(tkz )).
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Then, according to Lemma 5.2, for s ∈ [tkz , tkz + Tz], we get:

‖zi(s)‖ = ‖ei(s)− êi(s;ui(s; ei(tkz )), ei(tkz ))‖ ≤ ρi(s− tkz ).

Hence, zi ∈ Bis−tkz , which implies that: −zi ∈ Bis−tkz . The following implications
hold:

êi(s;ui(s; ei(tkz )), ei(tkz )) ∈ Ei ∼ Bis−tkz
⇒ ei(s)− zi ∈ E ∼ Bis−tkz

⇒ ei(s) + (−zi) ∈ E ∼ Bis−tkz
⇒ ei(s) ∈ Ei,∀ s ∈ [tkz , tkz + Tz],

which concludes the proof.

B.4 Proof of Lemma 5.3

Proof. For every e1, e2 ∈ Φi, i ∈ V, the following holds:

|Vi(e1, u)− Vi(e2, u)| = |e>1 Pie1 + u>Riu− e>2 Pie2 − u>Piu|
= |e>1 Pie1 − e>2 Pie2|

= |e>1 Pie1 + e>1 Pie2 − e>1 Pie2 − e>2 Pie2|
= |e>1 Pi(e1 − e2)− e>2 Pi(e1 − e2)|
≤ |e>1 Pi(e1 − e2)|+ |e>2 Pi(e1 − e2)|. (B.6)

By employing property (B.6) is written as:

|Fi(e1, u)− Fi(e2, u)| ≤ σmax(Pi)‖e1‖‖e1 − e2‖+ σmax(Pi)‖e2‖‖e1 − e2‖
= σmax(Pi)(‖e1‖+ ‖e2‖)‖e1 − e2‖

= σmax(Pi)
[

sup
e1,e2∈Φi

{‖e1‖+ ‖e2‖}
]
‖e1 − e2‖

= 2σmax(Pi)
[

sup
ei∈Φi

{‖ei‖}
]
‖e1 − e2‖

= [2αi,1σmax(Pi)] ‖e1 − e2‖,

which completes the proof.

B.5 Proof of Lemma 5.4

Proof. For every s ≥ tkz+1 , Li > 0 the following inequality holds:[
eLi(tkz+1−tkz ) − 1

]
+
[
eLi(s−tkz+1 ) − 1

]
≤
[
eLi(s−tkz ) − 1

]
,
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which implies that:

ρ̃i

[
eLi(tkz+1−tkz ) − 1

]
+ ρ̃i

[
eLi(s−tkz+1 ) − 1

]
≤ ρ̃i

[
eLi(s−tkz ) − 1

]
. (B.7)

or equivalently

ρi(tkz+1 − tkz ) + ρi(s− tkz+1) ≤ ρi(s− tkz ). (B.8)

Let us consider φ ∈ Bis−tkz+1
. Then, it holds ‖φ‖ ≤ ρi(s − tkz+1). Let us denote

z = x− y + φ. It is clear that:

‖z‖ ≤ ‖x− y + φ‖
≤ ‖x− y‖+ ‖φ‖
≤ ρi(tkz+1 − tkz ) + ρi(s− tkz+1). (B.9)

By employing (B.8), (B.9) becomes:

‖z‖ ≤ ρi(s− tkz ),

which implies that z ∈ Bis−tkz . We have that:

x+ (−z) = y + (−φ),
x ∈ Es−tkz = E ∼ Bs−tkz ,
−z ∈ Bis−tkz ,

−ρ ∈ Bis−tkz+1
,

which implies that y ∈ Es−tkz+1
= E ∼ Bs−tkz+1

.

B.6 Proof of Lemma 5.5

Proof. Let s ≥ tkz . The following equalities hold:

‖êi(s;ui(·), ei(tkz+1))− êi(s;ui(·), ei(tkz ))‖

=
∥∥∥∥∥êi(s;ui(·), ei(tkz+1)) +

∫ s

tkz+1

gi(êi(s′), ˆ̄xi(s′), ui(·))ds′

− êi(tkz ;ui(·), ei(tkz ))−
∫ s

tkz

gi(êi(s′), ˆ̄xi(s′), ui(·)))ds
∥∥∥∥∥
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=
∥∥∥∥∥ei(tkz+1)− ei(tkz )−

∫ s

tkz

gi(êi(s′), ˆ̄xi(s′), ui(·))ds′

−
∫ tkz+1

s

gi(êi(s′), ˆ̄xi(s′), ui(·))ds′
∥∥∥∥∥

=
∥∥∥∥∥ei(tkz+1)− ei(tkz )−

∫ tkz+1

tkz

gi(êi(s′), ˆ̄xi(s′), ui(·))ds′
∥∥∥∥∥

=
∥∥∥∥∥ei(tkz+1)− ei(tkz )−

∫ tkz+1

tkz

d

dt
[êi(s′;ui(·), ei(tkz )] ds′

∥∥∥∥∥
=
∥∥ei(tkz+1)− ei(tkz )− ê(tkz+1 ;u(·), ei(tkz )) + êi(tkz ;ui(·), ei(tkz ))

∥∥
=
∥∥ei(tkz+1)− ei(tkz )− ê(tkz+1 ;u(·), ei(tkz )) + ei(tkz )

∥∥
=
∥∥ei(tkz+1)− êi(tkz+1 ;ui(·), ei(tkz ))

∥∥ ,
which, by employing Lemma 5.2 for s = tkz+1 , becomes:

‖êi(s;u(·), ei(tkz+1))− êi(s;ui(·), ei(tkz ))‖ ≤ ρi(tkz+1 − tkz ) = ρi(h),

since tkz+1 − tkz = h, which concludes the proof.

B.7 Proof of Theorem 5.1

Proof. The proof consists of two parts: in the first part it is established that initial
feasibility implies feasibility afterwards. Based on this result it is then shown that
the error ei(t) converges to the terminal set Ei.

Feasibility Analysis: Consider any sampling time instant for which a solution
exists, say tkz . In between tkz and tkz+1 , the optimal control input û?i (s; ei(tkz )), s ∈
[tkz , tkz+1) is implemented. The remaining part of the optimal control input

û?i (s; ei(tkz )), s ∈ [tkz+1 , tkz + Tz],

satisfies the state and input constraints Ei,Ui, respectively. Furthermore, since the
problem is feasible at time tkz , it holds that:

êi(s; û?(s; ei(tkz )), ei(tkz )) ∈ Eis−tkz , (B.10a)
êi(tkz + T ; û?i (s; ei(tkz )), ei(tkz )) ∈ Ei, (B.10b)

for s ∈ [tkz , tkz + Tz]. By using Property 1, (B.10a) implies also that

ei(s; û?i (s; ei(tkz )), ei(tkz )) ∈ Ei.

We know also from Assumption 5.4 that for all ei ∈ Ei, there exists at least one
control input uf,i(·) that renders the set Ei invariant over h. Picking any such input,
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a feasible control input ūi(·; ei(tkz+1)), at time instant tkz+1 , may be the following:

ūi(s; e(tkz+1)) =
{
û?i (s; ei(tkz )), s ∈ [tkz+1 , tkz + Tz+1],
uf,i(tkz + Tz+1; û?(·), e(ti))), s ∈ [tkz + Tz+1, tkz + Tz].

(B.11)

For the time intervals it holds that (see Fig. 5.4):

tkz + Tz+1 = tkz + Tz − h = tkz + T − h.

For the feasibility of the ROCP, we have to prove the following three statements for
every s ∈ [tkz+1 , tkz + Tz]:

1. ūi(s; e(tkz+1)) ∈ Ui.

2. êi(tkz + Tz; ū(s; e(tkz+1)), e(tkz+1)) ∈ Ei.

3. êi(s; ūi(s; e(tkz+1)), e(tkz+1)) ∈ Eis−tkz+1
.

Statement 1: From the feasibility of û?i (s, e(tkz )) and the fact that uf,i(ei(·)) ∈ Ui,
for all ei(·) ∈ Φi, it follows that:

ūi(s; ei(tkz+1)) ∈ Ui,∀ s ∈ [tkz+1 , tkz + Tz].

Statement 2: We need to prove in this step that for every s ∈ [tkz+1 , tkz +Tz] it holds
that êi(tkz + Tz; ūi(s; ei(tkz+1))), ei(tkz+1)) ∈ Ei. Since Vi(·) is Lipschitz continuous,
we get:

Vi(êi(tkz + Tz+1; ūi(·), ei(tkz+1)))− Vi(êi(tkz + Tz+1; ūi(·), ei(tkz ))) ≤
LVi‖êi(tkz + Tz+1; ūi(·), ei(tkz+1))− ê(tkz + Tz+1; ūi(·), e(tkz ))‖, (B.12)

for the same control input ūi(·) = u?i (s; ei(tkz)). By employing Lemma 5.5 for
α = tkz + Tz+1 and u(·) = ūi(·) = u?i (s; ei(tkz )), we have that:

‖êi(tkz + Tz; ūi(·), ei(tkz+1))− êi(tkz + Tz+1; ūi(·), e(tkz ))‖
≤ ρi(tkz+1 − tkz ) = ρi(h). (B.13)

Note also that for the function ρi(·) the following implication holds:

h ≤ Tz ⇒ ρi(h) ≤ ρi(Tz).

By employing the latter result, (B.13) becomes:

‖êi(tkz + Tz; ūi(·), ei(ti+1))
− êi(tkz + Tz+1; ūi(·), e(tkz ))‖ ≤ ρi(h) ≤ ρi(Tz). (B.14)
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By combining (B.14) and (B.12) we get:

Vi(êi(tkz + Tz+1; ūi(·), ei(tkz+1)))−
Vi(êi(tkz + Tz+1; ūi(·), ei(tkz ))) ≤ LViρi(Tz),

or equivalently:

Vi(êi(tkz + Tz+1; ūi(·), ei(tkz+1))) ≤
Vi(êi(tkz + Tz+1; ūi(·), ei(tkz ))) + LViρi(Tz). (B.15)

By using (B.10b), we have that êi(tkz + Tz+1; ūi(·), ei(tkz )) ∈ Ei. Then, (B.15) gives:

Vi(êi(tkz + Tz+1; ūi(·), ei(tkz+1))) ≤ α2,i + LViρi(Tz) (B.16)

From (5.24) of the Theorem 1, we get equivalently:

ρi(Tz) ≤
α1,1 − α2,i

LVi
⇔ α2,i + LViρi(Tz) ≤ α1,i. (B.17)

By combining (B.16) and (B.17), we get:

Vi(êi(tkz + Tz+1; ūi(·), ei(tkz+1))) ≤ α1,i,

which, from Assumption 5.4, implies that:

êi(tkz + Tz+1; ūi(·), ei(tkz+1)) ∈ Φi. (B.18)

But since ūi(·) is chosen to be local admissible controller from Assumption 5.4,
according to our choice of terminal set Ei, (B.18) leads to:

êi(tkz + Tz; ūi(·), ei(tkz+1)) ∈ Ei.

Thus, statement 2 holds.
Statement 3: By employing Lemma 5.5 for:

x = êi(s; ūi(s; e(tkz )), e(tkz )) ∈ Eis−ti ,
y = êi(s; ūi(s; e(tkz+1)), e(tkz+1)),

we get that:

‖y − x‖ = ‖ê(s; ū(s; e(ti+1)), e(ti+1))
− ê(s; ū(s; e(ti)), e(ti)) ∈ Es−ti‖ ≤ ρi(h).

Furthermore, by employing Lemma 5.4 for s ∈ [tkz+1 , tkz + Tz] and the same x, y as
previously we get that y = êi(s; ū(s; ei(tkz+1)), e(tkz+1)) ∈ Eis−tkz+1

, which according
to Property 1, implies that ei(s; ūi(s; ei(tkz+1)), ei(tkz+1)) ∈ Ei. Thus, Statement 3
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holds. Hence, the feasibility at time tkz implies feasibility at time tkz+1 . Therefore, if
the ROCP (5.11a) - (5.11d) is feasible at time tkz , i.e., it remains feasible for every
t ∈ [tk, tk + T ].

Convergence Analysis: The second part involves proving convergence of the state
ei to the terminal set Ei. In order to prove this, it must be shown that a proper
value function is decreasing along the solution trajectories starting at a sampling
time ti. Consider the optimal value function J?i (ei(tkz)), as is given in (5.16), to
be a Lyapunov-like function. Consider also the cost of the feasible control input,
indicated by:

J̄i(ei(tkz+1)) , J̄i(ei(tkz+1), ūi(·; ei(tkz+1))), (B.19)

where tkz+1 = tkz + h. Define:

ū1(s) , ūi(s; ei(tkz+1)), (B.20a)
ē1(s) , ēi(s;u1(s), ei(tkz+1)), s ∈ [tkz+1 , tkz + T ], (B.20b)

where ē1(s) stands for the predicted state ei at time s, based on the measurement of
the state ei at time tkz+1 , while using the feasible control input ūi(s; e(tkz+1)) from
(B.11). Let us also define the following terms:

û2(s) , û?i (s; ei(tkz )), (B.21)
ê2(s) , êi(s; û2(s), ei(tkz )), s ∈ [tkz , tkz + T − h].

where ê1(s) stands for the predicted state ei at time s, based on the measurement of
the state ei at time tkz , while using the control input ûi(s; e(tkz )), s ∈ [tkz , tkz+T−h]
from (B.11). By employing (5.11a), (5.16) and (B.19), the difference between the
optimal and feasible cost is given by:

J̄(ei(tkz+1))− J?(ei(tkz )) = Vi(ē1(tkz + T )) +
∫ tkz+T

tkz+1

[
Fi(ē1(s), ū1(s))

]
ds

− Vi(ê2(tkz + T − h))−
∫ tkz+T−h

tkz

[
Fi(ê2(s), û2(s))

]
ds

= Vi(ē1(tkz + T )) +
∫ tkz+1 +T−h

tkz+1

[
Fi(ē1(s), ū1(s))

]
ds

+
∫ tkz+T

tkz+T−h

[
Fi(ē1(s), ū1(s))

]
ds− Vi(ê2(tkz + T − h))

−
∫ tkz+1

tkz

[
Fi(ê2(s), û2(s))

]
ds−

∫ tkz+T−h

tkz+1

[
Fi(ê2(s), û2(s))

]
ds. (B.22)

Note that, from (B.11), the following holds:

ūi(s; ei(tkz+1)) = û?i (s; ei(tkz )),∀ s ∈ [tkz+1 , tkz + T − h]. (B.23)



104 Proofs of Chapter 5

By combining (B.20a), (B.21) and (B.23), we have that:

ū1(s) = û2(s) = ūi(s; ei(tkz+1)) = û?i (s; ei(tkz )),∀ s ∈ [tkz+1 , tkz + T − h], (B.24)

By applying the last result and the fact that Fi(e, u) is Lipschitz, the following
holds:

∫ tkz+T−h

tkz+1

[
Fi(ē1(s), ū1(s))

]
ds−

∫ tkz+T−h

tkz+1

[
Fi(ê2(s), û2(s))

]
ds

=
∫ tkz+T−h

tkz+1

[
Fi(ē1(s), ū1(s))− Fi(ê2(s), û2(s))

]
ds

=
∫ tkz+T−h

tkz+1

[
Fi(ē1(s), ūi(s; ei(tkz+1)))− Fi(ê2(s), ūi(s; ei(tkz+1)))

]
ds

≤

∥∥∥∥∥
∫ tkz+T−h

tkz+1

[
Fi(ē1(s), ūi(·))− Fi(ê2(s), ūi(·))

]
ds

∥∥∥∥∥
≤
∫ tkz+T−h

tkz+1

∥∥∥Fi(ē1(s), ūi(·))− Fi(ê2(s), ūi(·))
∥∥∥ds

≤ LFi
∫ tkz+T−h

tkz+1

‖ē1(s)− ê2(s)‖ ds. (B.25)

By employing the fact that ∀s ∈ [tkz+1 , tkz + T − h] the following holds:

ēi(s; ūi(·), ei(tkz+1)) = êi(s; ūi(·), ei(tkz )), (B.26)

the term ‖ē1(s)− ê2(s)‖ can be written as:

‖ē1(s)− ê2(s)‖ = ‖ēi(s; ūi(·), ei(tkz+1))− êi(s; ûi(·), ei(tkz ))‖

=
∥∥∥∥∥ēi(tkz+1 ; ūi(·), ei(tkz+1)) +

∫ s

tkz+1

gi(ēi(s′), ˆ̄xi(s′), ūi(·))ds′

− êi(tkz ; ûi(·), ei(tkz ))−
∫ tkz+1

tkz

gi(êi(s), ˆ̄xi(s′), ûi(·))ds

−
∫ s

tkz+1

gi(êi(s′), ˆ̄xi(s′), ūi(·))ds′
∥∥∥∥∥
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≤

∥∥∥∥∥ei(tkz+1)− ei(tkz )−
∫ tkz+1

tkz

gi(êi(s′), ˆ̄xi(s′), ûi(·))ds′
∥∥∥∥∥

+
∥∥∥∥∥
∫ s

tkz+1

gi(ēi(s′), ˆ̄xi(·), ūi(·))ds′ −
∫ s

tkz+1

gi(êi(s′), ˆ̄xi(·), ūi(·))ds′
∥∥∥∥∥

=
∥∥∥∥∥ei(tkz+1)− ei(tkz )−

∫ tkz+1

tkz

d

dt
[êi(s; ûi(·), ei(tkz ))] ds

∥∥∥∥∥
+
∥∥∥∥∥
∫ s

tkz+1

d

dt

[
ēi(s′; ūi(·), ei(tkz+1))

]
ds′ −

∫ s

tkz+1

d

dt
[êi(s′; ūi(·), ei(tkz ))] ds′

∥∥∥∥∥
=
∥∥ei(tkz+1)− ei(tkz )− êi(tkz+1 ; ûi(·), ei(tkz )) + êi(tkz ; ûi(·), ei(tkz ))

∥∥
+
∥∥ēi(s; ūi(·), ei(tkz+1))− ēi(ti+1; ūi(·), ei(tkz+1))

− êi(s; ūi(·), ei(tkz )) + êi(tkz+1 ; ūi(·), ei(tkz ))
∥∥

=
∥∥ei(tkz+1)− ei(tkz )− êi(tkz+1 ; ûi(·), ei(tkz )) + ei(tkz )

∥∥
=
∥∥ei(tkz+1)− êi(tkz+1 ; ûi(·), ei(tkz ))

∥∥ ,
which, by employing Lemma 5.2, leads to:

‖ē1(s)− ê2(s)‖ ≤ ρi(tkz+1 − tkz ) = ρi(h).

By combining the last result with (B.25) we get:∫ tkz+T−h

tkz+1

[
Fi(ē1(s), ū1(s))

]
ds−

∫ tkz+T−h

tkz+1

[
Fi(ê2(s), û2(s))

]
ds

≤ LFi
∫ tkz+T−h

tkz+1

ρi(h)ds = (T − 2h)ρi(h)LFi . (B.27)

By combining the last result with (B.25), (B.22) becomes:

J̄(ei(tkz+1))− J?(ei(tkz )) ≤ (T − 2h)ρi(h)LFi
+ Vi(ē1(tkz + T ))− Vi(ê2(tkz + T − h))

+
∫ tkz+T

tkz+T−h

[
Fi(ē1(s), ū1(s))

]
ds−

∫ tkz+1

tkz

[
Fi(ê2(s), û2(s))

]
ds. (B.28)

By integrating inequality (5.21) from tkz +T −h to tkz +T and we get the following:∫ tkz+T

tkz+T−h

[∂V
∂e
· gi(ē1(s), ˆ̄xi(s), ū1(s)) + Fi(ē1(s), ū1(s))

]
ds ≤ 0

⇔Vi(ē1(tkz + T )− Vi(ē1(tkz + T − h)) +
∫ tkz+T

tkz+T−h

[
Fi(ē1(s), ū1(s))

]
ds ≤ 0,
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which by adding and subtracting the term Vi(ê2(tkz + T − h)) becomes:

Vi(ē1(tkz + T )− Vi(ê2(tkz + T − h)) +
∫ tkz+T

tkz+T−h

[
Fi(ē1(s), ū1(s))

]
ds

≤ Vi(ē1(tkz + T − h))− Vi(ê2(tkz + T − h)).

By employing the property y ≤ |y|,∀y ∈ R, we get:

Vi(ē1(tkz + T )− Vi(ê2(tkz + T − h)) +
∫ tkz+T

tkz+T−h

[
Fi(ē1(s), ū1(s))

]
ds

≤ |Vi(ē1(tkz + T − h))− Vi(ê2(tkz + T − h))| . (B.29)

By employing Lemma 5.3, we have that:

|Vi(ē1(tkz + T − h))− Vi(ê2(tkz + T − h))| ≤
LVi‖ē1(tkz + T − h)− ê2(tkz + T − h)‖,

which by employing Lemma 5.5 and (B.24), becomes:

|Vi(ē1(tkz + T − h))− Vi(ê2(tkz + T − h))| ≤ LViρi(tkz+1 − tkz ) = ρi(h)LVi .

By combining the last result with (B.29), we get:

Vi(ē1(tkz + T )− Vi(ê2(tkz + T − h))

+
∫ tkz+T

tkz+T−h

[
Fi(ē1(s), ū1(s))

]
ds ≤ ρi(h)LVi .

The last inequality along with (B.28) leads to:

J̄(e(tkz+1))− J?(e(tkz )) ≤ (T − 2h)ρi(h)LFi + ρi(h)LVi

−
∫ tkz+1

tkz

[
Fi(ê2(s), û2(s))

]
ds. (B.30)

By substituting ei = ê2(s), ui = û2(s) in (5.12) we get Fi(ê2(s), û2(s)) ≥ mi‖ê2(s)‖2,
or equivalently:∫ tkz+1

tkz

[
Fi(ê2(s), û2(s))

]
ds ≥ mi

∫ tkz+1

tkz

‖ê2(s)‖2ds

⇔−
∫ tkz+1

tkz

[
F (ê2(s), û2(s))

]
ds ≤ −mi

∫ tkz+1

tkz

‖ê2(s)‖2ds.

By combining the last result with (B.30), we get:

J̄i(e(tkz+1))− J?i (e(tkz )) ≤ (T − 2h)ρi(h)LFi + ρi(h)LVi

−mi

∫ tkz+1

tkz

‖ê2(s)‖2ds (B.31)
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It is clear that the optimal solution at time tkz+1 i.e., J?(ei(tkz+1)) will not be worse
than the feasible one at the same time i.e. J̄(ei(tkz+1)). Therefore, (B.31) implies:

J?i (ei(tkz+1))− J?i (ei(tkz )) ≤ (T − 2h)ρi(h)LFi + ρi(h)LVi

−mi

∫ tkz+1

tkz

‖ê2(s)‖2ds,

which is equivalent to:

J?i (ei(tkz+1))− J?i (ei(tkz )) ≤ −mi

∫ tkz+1

tkz

‖êi(s; û?i (s; ei(tkz )), ei(tkz ))‖2ds

+ (T − 2h)ρi(h)LFi + ρi(h)LVi .

which, according to (2.1), is in the form:

J?i (ei(tkz+1))− J?i (ei(tkz )) ≤ −α(‖ei‖) + σ(‖x̄i‖). (B.32)

Thus, the optimal cost J has been proven to be decreasing, and according to
Definition 2.6 and Theorem 2.7, the closed loop system is ISS stable. Therefore, the
closed loop trajectories converges to the closed set Ei.
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Mémoire D ’ habilitation, Université Paris, 7:135–175, 2009.
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[126] H. Chen and F. Allgöwer. A Quasi-Infinite Horizon Nonlinear Model Predictive
Control Scheme with Guaranteed Stability. Automatica, 34(10):1205–1217,
1998.



Bibliography 119

[127] R. Findeisen, L. Imsland, F. Allgöwer, and B. Foss. Towards a Sampled-Data
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